Wie erkennt man bei einem Wendepunkt, ob die zweite Ableitung ein Maximum oder Minimum hat?

Antwort

Ein Wendepunkt liegt vor, wenn die zweite Ableitung \( f''(x) \) an einer Stelle \( x = x_0 \) null ist und die dritte Ableitung \( f'''(x) \) an dieser Stelle ungleich null ist. Um zu bestimmen, ob \( f''(x) \) an dieser Stelle ein Maximum oder Minimum hat, kannst du die dritte Ableitung \( f'''(x) \) verwenden: - Wenn \( f'''(x_0) > 0 \), dann hat \( f''(x) \) an \( x_0 \) ein Minimum. - Wenn \( f'''(x_0) < 0 \), dann hat \( f''(x) \) an \( x_0 \) ein Maximum. Diese Information hilft dir zu verstehen, wie sich die Krümmung der Funktion \( f(x) \) ändert, was wiederum den Wendepunkt charakterisiert.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Ist die Funktion g(x) = |x-1| + |x-2| differenzierbar?

Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Wie lautet die Ableitung von f(x) = Wurzel(2x) unter Verwendung der Kettenregel (innere und äußere Ableitung)?

Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]