Wie verhält sich f(x) = 2x * e^(-x²) gegen +/- unendlich?

Antwort

Um das Verhalten der Funktion \( f(x) = 2x e^{-x^2} \) zu analysieren, wenn \( x \) gegen \( +\infty \) und \( -\infty \) strebt, betrachten wir die beiden Fälle separat. 1. **Für \( x \to +\infty \)**: - Der Exponentialterm \( e^{-x^2} \) geht sehr schnell gegen 0, da \( -x^2 \) für große positive Werte von \( x \) sehr negativ wird. - Obwohl der Faktor \( 2x \) gegen \( +\infty \) strebt, wächst der Exponentialterm viel schneller gegen 0 als \( 2x \) gegen \( +\infty \) wächst. - Daher gilt: \[ f(x) \to 0 \quad \text{für } x \to +\infty. \] 2. **Für \( x \to -\infty \)**: - Hier wird \( 2x \) negativ und strebt gegen \( -\infty \). Der Exponentialterm \( e^{-x^2} \) bleibt jedoch positiv und geht ebenfalls gegen 0, da \( -x^2 \) für große negative Werte von \( x \) ebenfalls sehr negativ wird. - In diesem Fall wird das Produkt \( 2x e^{-x^2} \) auch gegen 0 streben, weil der Exponentialterm schneller gegen 0 geht als \( 2x \) gegen \( -\infty \) wächst. - Daher gilt: \[ f(x) \to 0 \quad \text{für } x \to -\infty. \] Zusammenfassend verhält sich die Funktion \( f(x) = 2x e^{-x^2} \) so, dass sie gegen 0 strebt, wenn \( x \) gegen \( +\infty \) oder \( -\infty \) geht.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Wie kann man mit l'Hospital begründen, dass e^x schneller wächst als x^n?

Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]