Löse a = 7,2, c = 21. Was ist b (Satz des Pythagoras)?

Antwort

Um den Satz des Pythagoras anzuwenden, müssen wir sicherstellen, dass wir es mit einem rechtwinkligen Dreieck zu tun haben. Der Satz des Pythagoras lautet: \[ a^2 + b^2 = c^2 \] Hierbei ist \( c \) die Hypotenuse (die längste Seite des Dreiecks), und \( a \) und \( b \) sind die beiden anderen Seiten. Gegeben sind: \[ a = 7,2 \] \[ c = 21 \] Wir müssen \( b \) finden. Setzen wir die gegebenen Werte in die Gleichung ein: \[ 7,2^2 + b^2 = 21^2 \] Berechne \( 7,2^2 \) und \( 21^2 \): \[ 7,2^2 = 51,84 \] \[ 21^2 = 441 \] Setze diese Werte in die Gleichung ein: \[ 51,84 + b^2 = 441 \] Um \( b^2 \) zu isolieren, subtrahiere \( 51,84 \) von beiden Seiten der Gleichung: \[ b^2 = 441 - 51,84 \] \[ b^2 = 389,16 \] Nun ziehe die Quadratwurzel, um \( b \) zu finden: \[ b = \sqrt{389,16} \] \[ b \approx 19,73 \] Also ist \( b \) ungefähr 19,73.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man das Integral von 0 bis 0,25 der Funktion 1/(√x * (1-√x)) dx?

Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]

Wie groß ist die Fläche eines rechtwinkligen Dreiecks mit Hypotenuse 10 cm und Höhe auf der Hypotenuse 6 cm?

Die Fläche eines Dreiecks berechnet sich allgemein mit: \[ A = \frac{1}{2} \cdot \text{Grundseite} \cdot \text{zugehörige Höhe} \] In deinem Fall ist die Grundseite die Hypotenuse \(... [mehr]

Wie lautet die Ableitung von f(x) = Wurzel(2x) unter Verwendung der Kettenregel (innere und äußere Ableitung)?

Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Wurzel von 54 mal 6 durch 3 mal 48?

Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]

Was ist die 4. Wurzel von 1/16?

Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]