Hat die Funktion f:[−1,5]⟶R mit f(x)=2x²+8x+6 den Wertebereich Wf=[−1,5] und ist f umkehrbar mit f⁻¹(x)=−2+1+x²?

Antwort

Um die Umkehrbarkeit der Funktion \( f(x) = 2x^2 + 8x + 6 \) zu überprüfen, müssen wir zunächst den Wertebereich der Funktion bestimmen und dann die Umkehrfunktion analysieren. 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist. Um den Wertebereich zu finden, bestimmen wir die Extrempunkte. Zuerst berechnen wir die Ableitung: \[ f'(x) = 4x + 8 \] Setzen wir die Ableitung gleich null, um die Extrempunkte zu finden: \[ 4x + 8 = 0 \implies x = -2 \] Da \( -2 \) nicht im Intervall \([-1, 5]\) liegt, müssen wir die Funktionswerte an den Randpunkten des Intervalls betrachten: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] Der Wertebereich von \( f \) auf dem Intervall \([-1, 5]\) ist also \( [0, 96] \). 2. **Umkehrbarkeit**: Eine Funktion ist umkehrbar, wenn sie streng monoton ist. Da die Ableitung \( f'(x) = 4x + 8 \) für \( x \geq -1 \) immer positiv ist (da \( f'(-1) = 4(-1) + 8 = 4 > 0 \)), ist die Funktion auf dem Intervall \([-1, 5]\) streng monoton steigend. 3. **Umkehrfunktion**: Die angegebene Umkehrfunktion \( f^{-1}(x) = -2 + \sqrt{1 + x} \) scheint nicht korrekt zu sein. Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \) und lösen nach \( x \) auf: \[ y = 2x^2 + 8x + 6 \] Umstellen ergibt: \[ 2x^2 + 8x + (6 - y) = 0 \] Dies ist eine quadratische Gleichung in \( x \). Die Lösung für \( x \) ist gegeben durch die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} \] \[ = \frac{-8 \pm \sqrt{64 - 8(6 - y)}}{4} = \frac{-8 \pm \sqrt{8y - 8}}{4} = \frac{-8 \pm 2\sqrt{2(y - 1)}}{4} \] \[ = \frac{-2 \pm \sqrt{2(y - 1)}}{2} \] Da wir die positive Lösung für die Umkehrfunktion benötigen (da \( f \) monoton steigend ist), erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{2(y - 1)}}{2} \] Zusammenfassend ist die Funktion \( f(x) = 2x^2 + 8x + 6 \) auf dem Intervall \([-1, 5]\) umkehrbar, und der Wertebereich ist \( [0, 96] \). Die angegebene Umkehrfunktion ist nicht korrekt.

Neue Frage stellen

Verwandte Fragen

Was ist die Umkehrfunktion von -x?

Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).

Was ist eine Umkehrfunktion?

Die Umkehrfunktion (auch Inverse Funktion genannt) ist eine Funktion, die die Wirkung einer anderen Funktion rückgängig macht. Wenn du eine Funktion \( f \) hast, die einen Wert \( x \) auf... [mehr]

Was ist die Heaviside-Funktion von x+5?

Die **Hauptwertfunktion** (oft als „hr-Funktion“ abgekürzt) eines Ausdrucks wie \( x+5 \) ist einfach die Funktion selbst, da es sich um eine lineare Funktion handelt. Die Funktionsv... [mehr]

Was ist eine Kurvendiskussion?

Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm... [mehr]

Wie kann ich eine Funktion in der Mitte einer anderen Gleichung verwenden?

Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]