Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Umkehrbarkeit der Funktion \( f(x) = 2x^2 + 8x + 6 \) zu überprüfen, müssen wir zunächst den Wertebereich der Funktion bestimmen und dann die Umkehrfunktion analysieren. 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist. Um den Wertebereich zu finden, bestimmen wir die Extrempunkte. Zuerst berechnen wir die Ableitung: \[ f'(x) = 4x + 8 \] Setzen wir die Ableitung gleich null, um die Extrempunkte zu finden: \[ 4x + 8 = 0 \implies x = -2 \] Da \( -2 \) nicht im Intervall \([-1, 5]\) liegt, müssen wir die Funktionswerte an den Randpunkten des Intervalls betrachten: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] Der Wertebereich von \( f \) auf dem Intervall \([-1, 5]\) ist also \( [0, 96] \). 2. **Umkehrbarkeit**: Eine Funktion ist umkehrbar, wenn sie streng monoton ist. Da die Ableitung \( f'(x) = 4x + 8 \) für \( x \geq -1 \) immer positiv ist (da \( f'(-1) = 4(-1) + 8 = 4 > 0 \)), ist die Funktion auf dem Intervall \([-1, 5]\) streng monoton steigend. 3. **Umkehrfunktion**: Die angegebene Umkehrfunktion \( f^{-1}(x) = -2 + \sqrt{1 + x} \) scheint nicht korrekt zu sein. Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \) und lösen nach \( x \) auf: \[ y = 2x^2 + 8x + 6 \] Umstellen ergibt: \[ 2x^2 + 8x + (6 - y) = 0 \] Dies ist eine quadratische Gleichung in \( x \). Die Lösung für \( x \) ist gegeben durch die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} \] \[ = \frac{-8 \pm \sqrt{64 - 8(6 - y)}}{4} = \frac{-8 \pm \sqrt{8y - 8}}{4} = \frac{-8 \pm 2\sqrt{2(y - 1)}}{4} \] \[ = \frac{-2 \pm \sqrt{2(y - 1)}}{2} \] Da wir die positive Lösung für die Umkehrfunktion benötigen (da \( f \) monoton steigend ist), erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{2(y - 1)}}{2} \] Zusammenfassend ist die Funktion \( f(x) = 2x^2 + 8x + 6 \) auf dem Intervall \([-1, 5]\) umkehrbar, und der Wertebereich ist \( [0, 96] \). Die angegebene Umkehrfunktion ist nicht korrekt.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]