Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um zu überprüfen, ob die gegebene Funktion \( f(x) = x^2 + 8x + 6 \) den Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion \( f^{-1}(x) = -2 + \sqrt{1 + x} \) korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs von \( f \)**: - Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist. - Um den Wertebereich zu bestimmen, berechnen wir die Nullstellen der Funktion, indem wir die Gleichung \( 2x^2 + 8x + 6 = 0 \) lösen: \[ = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^ - 4 \cdot 2 \cdot 6}}{2 \cdot 2} = \frac8 \pm \sqrt{64 - 48}}{4} = \frac8 \pm \sqrt{16}}{4} = \frac{-8pm 4}{4} \] Dies ergibt die Nullstellen x_1 = -1 \) und \( x_2 = -3 \ - Da der Definitionsbereich \( [-1, 5] \ ist, müssen wir den Funktionswert an den Randpunkten und dem Scheitelpunkt untersuchen. - Der Scheitelpunkt der Parabel liegt bei \( x = -\frac{b}{2a} = -\frac{8}{4} = -2 \), was außerhalb des Intervalls liegt. Daher betrachten wir die Randpunkte: - \( f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \) - \( f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \) Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: - Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \) und lösen nach \( x \) auf: \[ y = 2x^2 + 8x + 6 \implies 2x^2 + 8x + (6 - y) = 0 \] Dies ist eine quadratische Gleichung in \( x \). Die Lösung ist: \[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 8 + 8y}}{4} = \frac{-8 \pm \sqrt{8y + 56}}{4} \] Da wir nur den positiven Zweig für die Umkehrfunktion betrachten, erhalten wir: \[ x = -2 + \frac{\sqrt{8y + 56}}{4} = -2 + \frac{\sqrt{8(y + 7)}}{4} = -2 + \frac{\sqrt{2(y + 7)}}{2} \] Dies vereinfacht sich nicht direkt zu \( -2 + \sqrt{1 + y} \). Zusammenfassend ist der Wertebereich \( W_f = [0, 96] \) korrekt, aber die angegebene Umkehrfunktion scheint nicht korrekt zu sein. Die Umkehrfunktion müsste genauer überprüft werden.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]