Betrachten wir die Funktion f:[−1,5]⟶R mit f(x)=2x²+8x+6, deren Wertebereich Wf=[0,96] ist und die umkehrbar ist mit f⁻¹(x)=−2+1+√(x²)?

Antwort

Um zu überprüfen, ob die gegebene Funktion \( f(x) = x^2 + 8x + 6 \) den Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion \( f^{-1}(x) = -2 + \sqrt{1 + x} \) korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs von \( f \)**: - Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist. - Um den Wertebereich zu bestimmen, berechnen wir die Nullstellen der Funktion, indem wir die Gleichung \( 2x^2 + 8x + 6 = 0 \) lösen: \[ = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^ - 4 \cdot 2 \cdot 6}}{2 \cdot 2} = \frac8 \pm \sqrt{64 - 48}}{4} = \frac8 \pm \sqrt{16}}{4} = \frac{-8pm 4}{4} \] Dies ergibt die Nullstellen x_1 = -1 \) und \( x_2 = -3 \ - Da der Definitionsbereich \( [-1, 5] \ ist, müssen wir den Funktionswert an den Randpunkten und dem Scheitelpunkt untersuchen. - Der Scheitelpunkt der Parabel liegt bei \( x = -\frac{b}{2a} = -\frac{8}{4} = -2 \), was außerhalb des Intervalls liegt. Daher betrachten wir die Randpunkte: - \( f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \) - \( f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \) Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: - Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \) und lösen nach \( x \) auf: \[ y = 2x^2 + 8x + 6 \implies 2x^2 + 8x + (6 - y) = 0 \] Dies ist eine quadratische Gleichung in \( x \). Die Lösung ist: \[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 8 + 8y}}{4} = \frac{-8 \pm \sqrt{8y + 56}}{4} \] Da wir nur den positiven Zweig für die Umkehrfunktion betrachten, erhalten wir: \[ x = -2 + \frac{\sqrt{8y + 56}}{4} = -2 + \frac{\sqrt{8(y + 7)}}{4} = -2 + \frac{\sqrt{2(y + 7)}}{2} \] Dies vereinfacht sich nicht direkt zu \( -2 + \sqrt{1 + y} \). Zusammenfassend ist der Wertebereich \( W_f = [0, 96] \) korrekt, aber die angegebene Umkehrfunktion scheint nicht korrekt zu sein. Die Umkehrfunktion müsste genauer überprüft werden.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]