Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Um zu überprüfen, ob die gegebene Funktion \( f(x) = 2^2 + 8x + 6 \) den angegebenen Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine quadratische Funktion, die nach oben geöffnet ist (da der Koeffizient von \( x^2 \) positiv ist). Um den Wertebereich zu bestimmen, finden wir zunächst die Nullstellen der Funktion, indem wir die Gleichung \( f(x) = 0 \) lösen: \[ 2x^2 + 8x + 6 = 0 \] Wir verwenden die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 48}}{4} = \frac{-8 \pm \sqrt{16}}{4} = \frac{-8 \pm 4}{4} \] Dies ergibt die Nullstellen: \[ x_1 = -1 \quad \text{und} \quad x_2 = -3 \] Da wir nur den Bereich \( [-1, 5] \) betrachten, evaluieren wir \( f(x) \) an den Randpunkten und an der Scheitelpunkt: Der Scheitelpunkt \( x_s \) einer Parabel \( ax^2 + bx + c \) liegt bei \( x_s = -\frac{b}{2a} = -\frac{8}{4} = -2 \). Da \( -2 \) nicht im Intervall \( [-1, 5] \) liegt, betrachten wir nur die Randpunkte: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: Die Umkehrfunktion wird angegeben als: \[ f^{-1}(x) = -2 - 1 + \sqrt{x^2} \] Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \): \[ y = 2x^2 + 8x + 6 \] Um \( x \) in Abhängigkeit von \( y \) zu isolieren, stellen wir die Gleichung um: \[ 2x^2 + 8x + (6 - y) = 0 \] Wir verwenden wieder die Mitternachtsformel: \[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 8 + 8y}}{4} = \frac{-8 \pm \sqrt{8y + 56}}{4} \] Dies vereinfacht sich zu: \[ x = -2 \pm \frac{\sqrt{8y + 56}}{4} \] Da wir nur den positiven Zweig für die Umkehrfunktion betrachten, erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{8y + 56}}{4} \] Dies stimmt nicht mit der angegebenen Umkehrfunktion überein. Zusammenfassend ist der Wertebereich korrekt, aber die angegebene Umkehrfunktion ist nicht korrekt.
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]