Betrachten wir die Funktion f:[−1,5]⟶R mit f(x)=2x²+8x+6, die den Wertebereich Wf=[0,96] hat und umkehrbar ist?

Antwort

Um zu überprüfen, ob die gegebene Funktion \( f(x) = 2^2 + 8x + 6 \) den angegebenen Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine quadratische Funktion, die nach oben geöffnet ist (da der Koeffizient von \( x^2 \) positiv ist). Um den Wertebereich zu bestimmen, finden wir zunächst die Nullstellen der Funktion, indem wir die Gleichung \( f(x) = 0 \) lösen: \[ 2x^2 + 8x + 6 = 0 \] Wir verwenden die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 48}}{4} = \frac{-8 \pm \sqrt{16}}{4} = \frac{-8 \pm 4}{4} \] Dies ergibt die Nullstellen: \[ x_1 = -1 \quad \text{und} \quad x_2 = -3 \] Da wir nur den Bereich \( [-1, 5] \) betrachten, evaluieren wir \( f(x) \) an den Randpunkten und an der Scheitelpunkt: Der Scheitelpunkt \( x_s \) einer Parabel \( ax^2 + bx + c \) liegt bei \( x_s = -\frac{b}{2a} = -\frac{8}{4} = -2 \). Da \( -2 \) nicht im Intervall \( [-1, 5] \) liegt, betrachten wir nur die Randpunkte: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: Die Umkehrfunktion wird angegeben als: \[ f^{-1}(x) = -2 - 1 + \sqrt{x^2} \] Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \): \[ y = 2x^2 + 8x + 6 \] Um \( x \) in Abhängigkeit von \( y \) zu isolieren, stellen wir die Gleichung um: \[ 2x^2 + 8x + (6 - y) = 0 \] Wir verwenden wieder die Mitternachtsformel: \[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 8 + 8y}}{4} = \frac{-8 \pm \sqrt{8y + 56}}{4} \] Dies vereinfacht sich zu: \[ x = -2 \pm \frac{\sqrt{8y + 56}}{4} \] Da wir nur den positiven Zweig für die Umkehrfunktion betrachten, erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{8y + 56}}{4} \] Dies stimmt nicht mit der angegebenen Umkehrfunktion überein. Zusammenfassend ist der Wertebereich korrekt, aber die angegebene Umkehrfunktion ist nicht korrekt.

Neue Frage stellen

Verwandte Fragen

Was ist die Umkehrfunktion von -x?

Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).

Was ist eine Umkehrfunktion?

Die Umkehrfunktion (auch Inverse Funktion genannt) ist eine Funktion, die die Wirkung einer anderen Funktion rückgängig macht. Wenn du eine Funktion \( f \) hast, die einen Wert \( x \) auf... [mehr]

Was ist die Heaviside-Funktion von x+5?

Die **Hauptwertfunktion** (oft als „hr-Funktion“ abgekürzt) eines Ausdrucks wie \( x+5 \) ist einfach die Funktion selbst, da es sich um eine lineare Funktion handelt. Die Funktionsv... [mehr]

Was ist eine Kurvendiskussion?

Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm... [mehr]

Wie kann ich eine Funktion in der Mitte einer anderen Gleichung verwenden?

Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]