Betrachten wir die Funktion f:[−1,5]⟶R mit f(x)=2x²+8x+6, die den Wertebereich Wf=[0,96] hat und umkehrbar ist?

Antwort

Um zu überprüfen, ob die gegebene Funktion \( f(x) = 2^2 + 8x + 6 \) den angegebenen Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine quadratische Funktion, die nach oben geöffnet ist (da der Koeffizient von \( x^2 \) positiv ist). Um den Wertebereich zu bestimmen, finden wir zunächst die Nullstellen der Funktion, indem wir die Gleichung \( f(x) = 0 \) lösen: \[ 2x^2 + 8x + 6 = 0 \] Wir verwenden die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 48}}{4} = \frac{-8 \pm \sqrt{16}}{4} = \frac{-8 \pm 4}{4} \] Dies ergibt die Nullstellen: \[ x_1 = -1 \quad \text{und} \quad x_2 = -3 \] Da wir nur den Bereich \( [-1, 5] \) betrachten, evaluieren wir \( f(x) \) an den Randpunkten und an der Scheitelpunkt: Der Scheitelpunkt \( x_s \) einer Parabel \( ax^2 + bx + c \) liegt bei \( x_s = -\frac{b}{2a} = -\frac{8}{4} = -2 \). Da \( -2 \) nicht im Intervall \( [-1, 5] \) liegt, betrachten wir nur die Randpunkte: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: Die Umkehrfunktion wird angegeben als: \[ f^{-1}(x) = -2 - 1 + \sqrt{x^2} \] Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \): \[ y = 2x^2 + 8x + 6 \] Um \( x \) in Abhängigkeit von \( y \) zu isolieren, stellen wir die Gleichung um: \[ 2x^2 + 8x + (6 - y) = 0 \] Wir verwenden wieder die Mitternachtsformel: \[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} = \frac{-8 \pm \sqrt{64 - 8 + 8y}}{4} = \frac{-8 \pm \sqrt{8y + 56}}{4} \] Dies vereinfacht sich zu: \[ x = -2 \pm \frac{\sqrt{8y + 56}}{4} \] Da wir nur den positiven Zweig für die Umkehrfunktion betrachten, erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{8y + 56}}{4} \] Dies stimmt nicht mit der angegebenen Umkehrfunktion überein. Zusammenfassend ist der Wertebereich korrekt, aber die angegebene Umkehrfunktion ist nicht korrekt.

KI fragen

Verwandte Fragen

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]