Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Extremstellen der Funktion \( f(x) = x^4 - \frac{4}{x} \) zu berechnen, folge diesen Schritten: 1. **Ableitung bilden**: Zuerst berechnest du die erste Ableitung \( f'(x) \). \[ f'(x) = 4x^3 + \frac{4}{x^2} \] 2. **Nullstellen der Ableitung finden**: Setze die Ableitung gleich null, um die kritischen Punkte zu finden. \[ 4x^3 + \frac{4}{x^2} = 0 \] Multipliziere die gesamte Gleichung mit \( x^2 \) (vorausgesetzt \( x \neq 0 \)): \[ 4x^5 + 4 = 0 \] Daraus folgt: \[ x^5 = -1 \quad \Rightarrow \quad x = -1 \] 3. **Zweite Ableitung bilden**: Um zu bestimmen, ob es sich um ein Maximum oder Minimum handelt, berechne die zweite Ableitung \( f''(x) \). \[ f''(x) = 12x^2 - \frac{8}{x^3} \] 4. **Zweite Ableitung an den kritischen Punkten auswerten**: Setze \( x = -1 \) in die zweite Ableitung ein. \[ f''(-1) = 12(-1)^2 - \frac{8}{(-1)^3} = 12 + 8 = 20 \] Da \( f''(-1) > 0 \), handelt es sich um ein Minimum. 5. **Extremstelle bestimmen**: Setze \( x = -1 \) in die ursprüngliche Funktion ein, um den Funktionswert an der Extremstelle zu finden. \[ f(-1) = (-1)^4 - \frac{4}{-1} = 1 + 4 = 5 \] Zusammenfassend hat die Funktion \( f(x) = x^4 - \frac{4}{x} \) ein Minimum bei \( x = -1 \) mit dem Funktionswert \( f(-1) = 5 \).
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]