Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Gleichung \( 17 + 3(x - 5) - 3 = 5 \) zu lösen, folge diesen Schritten: 1. **Vereinfachen der linken Seite**: \[ 17 - 3 + 3(x - 5) = 5 \] Das vereinfacht sich zu: \[ 14 + (x - 5) = 5 \] 2. **Verteilen**: \[ 14 + 3x - 15 = 5 \] Das vereinfacht sich zu: \[ 3x - 1 = 5 \] 3. **Addiere 1 zu beiden Seiten**: \[ 3x = 6 \] 4. **Teile durch 3**: \[ x = 2 \] Die Lösung der Gleichung ist also \( x = 2 \).
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Gleichung \(-1,25x^2 + 5 = 0\) nach \(x\) aufzulösen, gehe wie folgt vor: **1. Gleichung aufstellen:** \[ -1{,}25x^2 + 5 = 0 \] **2. Subtrahiere 5 auf beiden Seiten:** \[ -1{,}25x^2 = -5... [mehr]
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **... [mehr]
**Beispielaufgabe:** Gegeben sind die beiden Funktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = -x^2 + 3x \). **Aufgabe:** Bestimme alle Schnittpunkte der beiden Funktionsgraphen. --- **... [mehr]
Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwindigkeit, Popula... [mehr]
Die Gleichung „ein halb mal X gleich 50“ kannst du mathematisch so aufschreiben: \[\frac{1}{2} \cdot x = 50\] Das ist die gesuchte Gleichung.
Um von der Gleichung \( 8 = \frac{1}{3^x} \) auf \( x^3 = \frac{1}{8} \) zu kommen, musst du die Gleichung so umformen, dass \( x \) isoliert wird und dann beide Seiten umstellen. Hier ist der Rechenw... [mehr]
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]