Frau Gerber ist heute so alt wie ihr Sohn. Vor 10 Jahren war sie 3-mal so alt wie er. Wie alt sind sie heute?

Antwort

Um das Alter von Frau Gerber und ihrem Sohn zu berechnen, können wir ein Gleichungssystem aufstellen. Nennen wir das heutige Alter von Frau Gerber \( G \) und das heutige Alter ihres Sohnes \( S \). 1. **Gleichung 1:** Frau Gerber ist heute so alt wie ihr Sohn vor 10 Jahren war. \[ G = S - 10 \] 2. **Gleichung 2:** Vor 10 Jahren war Frau Gerber dreimal so alt wie ihr Sohn. \[ G - 10 = 3 \cdot (S - 10) \] Nun lösen wir das Gleichungssystem: Zuerst setzen wir \( G \) aus der ersten Gleichung in die zweite Gleichung ein: \[ (S - 10) - 10 = 3 \cdot (S - 10) \] \[ S - 20 = 3S - 30 \] Nun lösen wir nach \( S \) auf: \[ S - 20 = 3S - 30 \] \[ -20 + 30 = 3S - S \] \[ 10 = 2S \] \[ S = 5 \] Jetzt setzen wir \( S = 5 \) in die erste Gleichung ein, um \( G \) zu finden: \[ G = S - 10 \] \[ G = 5 - 10 \] \[ G = -5 \] Es scheint, dass ein Fehler in der Berechnung vorliegt, da ein negatives Alter nicht möglich ist. Überprüfen wir die Gleichungen erneut: 1. **Gleichung 1:** \( G = S - 10 \) 2. **Gleichung 2:** \( G - 10 = 3 \cdot (S - 10) \) Setzen wir \( G = S - 10 \) in die zweite Gleichung ein: \[ (S - 10) - 10 = 3 \cdot (S - 10) \] \[ S - 20 = 3S - 30 \] \[ -20 + 30 = 3S - S \] \[ 10 = 2S \] \[ S = 5 \] Es scheint, dass die ursprünglichen Annahmen korrekt sind, aber die Lösung \( S = 5 \) und \( G = -5 \) ist nicht sinnvoll. Es könnte ein Fehler in der Problemstellung vorliegen. Bitte überprüfe die Angaben oder formuliere die Frage neu.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Löse die Gleichung 7 + 3x = 8 + (8x - 6) und gib die Lösungsmenge an.

Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]

Welche Beziehung müssen a, b und c haben, damit ax² + bx + c = 0 genau eine reelle Lösung hat?

Damit die Gleichung \( ax^2 + bx + c = 0 \) genau eine reelle Lösung hat, muss die Diskriminante \( D \) gleich null sein. Die Diskriminante wird durch die Formel \( D = b^2 - 4ac \) berechnet.... [mehr]

Löse die Gleichung 4(x + 1) - 2x = 2(x + 2).

Um die Gleichung \(4(x + 1) - 2x = 2(x + 2)\) zu lösen, folge diesen Schritten: 1. Verteile die Terme auf beiden Seiten der Gleichung: \[ 4x + 4 - 2x = 2x + 4 \] 2. Fasse die Terme auf... [mehr]

18 + 11x - 7 + 3x = 31?

Um die Gleichung \( 18 + 11x - 7 + 3x = 31 \) zu lösen, folge diesen Schritten: 1. Fasse die konstanten Terme auf der linken Seite zusammen: \[ 18 - 7 = 11 \] Somit wird die Gleichun... [mehr]

17x + 23 - 12x - 15 = 48?

Um die Gleichung \( 17x + 23 - 12x - 15 = 48 \) zu lösen, folge diesen Schritten: 1. Fasse die \( x \)-Terme und die konstanten Terme zusammen: \[ (17x - 12x) + (23 - 15) = 48 \] Das... [mehr]

7x + 19 - 4x + 2 = 70?

Um die Gleichung \(7x + 19 - 4x + 2 = 70\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme zusammen: \[ (7x - 4x) + (19 + 2) = 70 \] Das vereinfacht sich zu: \[ 3x +... [mehr]

3x + 8 + 6x - 3 = 32?

Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]

Wie löse ich die Gleichung 1a :(2^(-1/2) * a + 1^(-1/2)) nach a auf?

Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]

Wie löst man das Additionsverfahren bei 4x+3y=5 und -4x-5y=-5?

Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]

Wie alt bin ich, wenn ich doppelt so alt bin wie meine Tochter?

Du bist aktuell 59 Jahre alt, deine Tochter ist 9 Jahre alt. Der Altersunterschied zwischen euch beträgt also 50 Jahre. Du möchtest wissen, wann du doppelt so alt bist wie deine Tochter. Da... [mehr]