Berechne die achsensymmetrische Funktion vierten Grades mit Wendepunkt W(1/2) und Punkt A(2/0).

Antwort

Um eine achsensymmetrische Funktion vierten Grades zu finden, die einen Wendepunkt bei \( W(1, 2) \) hat und durch den Punkt \( A(2, 0) \) verläuft, kann die allgemeine Form einer solchen Funktion wie folgt dargestellt werden: \[ f(x) = a - 1)^2(x^2 + b) \] Hierbei ist \( a \) ein Skalierungsfaktor und \( b \) eine Konstante, die die Form der Funktion beeinflusst. Der Wendepunkt \( W(1, 2) \) bedeutet, dass \( f(1) = 2 \) und die zweite Ableitung an dieser Stelle gleich null ist. 1. **Bestimme \( f(1) = 2 \)**: \[ f(1) = a(1 - 1)^2(1^2 + b) = 2 \] Da der erste Faktor \( (1 - 1)^2 \) null ist, ist diese Gleichung nicht hilfreich. Wir müssen die Ableitungen betrachten. 2. **Berechne die erste und zweite Ableitung**: Die erste Ableitung ist: \[ f'(x) = a \left[ 2(x - 1)(x^2 + b) + (x - 1)^2(2x) \right] \] Die zweite Ableitung ist: \[ f''(x) = a \left[ 2(x^2 + b) + 4(x - 1)x + 2(x - 1)(2x) \right] \] Setze \( x = 1 \) in \( f''(x) \) ein und setze es gleich null, um den Wendepunkt zu bestätigen. 3. **Setze den Punkt \( A(2, 0) \) ein**: \[ f(2) = a(2 - 1)^2(2^2 + b) = 0 \] Das vereinfacht sich zu: \[ a(1)(4 + b) = 0 \] Das bedeutet, dass entweder \( a = 0 \) oder \( 4 + b = 0 \). Da \( a = 0 \) die Funktion trivial machen würde, setzen wir \( b = -4 \). 4. **Setze \( b \) in die Funktion ein**: Die Funktion wird dann: \[ f(x) = a(x - 1)^2(x^2 - 4) \] 5. **Bestimme \( a \)**: Jetzt setzen wir \( f(1) = 2 \): \[ f(1) = a(1 - 1)^2(1^2 - 4) = 2 \] Da der Ausdruck wieder null ist, müssen wir die Bedingung für den Punkt \( A(2, 0) \) verwenden: \[ f(2) = a(1)(0) = 0 \] Das ist immer erfüllt. Um \( a \) zu bestimmen, können wir eine weitere Bedingung verwenden, z.B. die Steigung oder eine andere Bedingung, die wir aus den Ableitungen ableiten können. Zusammenfassend ergibt sich die Funktion: \[ f(x) = a(x - 1)^2(x^2 - 4) \] Um \( a \) zu bestimmen, benötigst du zusätzliche Informationen oder Bedingungen.

KI fragen

Verwandte Fragen

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]