Wie groß sind die Winkel Alpha und Beta in einem rechtwinkligen Dreieck, wenn c 8,4 cm und b 7,2 cm lang ist?

Antwort

Um die Winkel \(\alpha\) und \(\beta\) in einem rechtwinkligen Dreieck zu berechnen, wenn die Längen der Seiten \(c\) (Hypotenuse) und \(b\) (eine der Katheten) gegeben sind, kann man die trigonometrischen Funktionen verwenden. Gegeben: - \(c = 8,4 \, \text{cm}\) - \(b = 7,2 \, \text{cm}\) Zuerst berechnet man die Länge der anderen Kathete \(a\) mit dem Satz des Pythagoras: \[ a = \sqrt{c^2 - b^2} \] \[ a = \sqrt{8,4^2 - 7,2^2} \] \[ a = \sqrt{7056 - 51,84} \] \[ a = \sqrt{18,72} \] \[ a \approx 4,33 \, \text{cm} \] Nun kann man die Winkel \(\alpha\) und \(\beta\) berechnen. Für \(\alpha\) (gegenüber der Kathete \(a\)): \[ \sin(\alpha) = \frac{a}{c} \] \[ \alpha = \arcsin\left(\frac{4,33}{8,4}\right) \] \[ \alpha \approx \arcsin(0,5155) \] \[ \alpha \approx 31,05^\circ \] Für \(\beta\) (gegenüber der Kathete \(b\)): \[ \cos(\beta) = \frac{b}{c} \] \[ \beta = \arccos\left(\frac{7,2}{8,4}\right) \] \[ \beta \approx \arccos(0,8571) \] \[ \beta \approx 31,05^\circ \] Da \(\alpha\) und \(\beta\) die beiden nicht-rechtwinkligen Winkel in einem rechtwinkligen Dreieck sind, gilt: \[ \alpha + \beta = 90^\circ \] Somit: \[ \beta \approx 90^\circ - 31,05^\circ \] \[ \beta \approx 58,95^\circ \] Die Winkel \(\alpha\) und \(\beta\) sind also ungefähr \(31,05^\circ\) und \(58,95^\circ\).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]

Ist ein solches Dreieck geometrisch möglich?

Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]

Wie groß ist die Fläche eines rechtwinkligen Dreiecks mit Hypotenuse 10 cm und Höhe auf der Hypotenuse 6 cm?

Die Fläche eines Dreiecks berechnet sich allgemein mit: \[ A = \frac{1}{2} \cdot \text{Grundseite} \cdot \text{zugehörige Höhe} \] In deinem Fall ist die Grundseite die Hypotenuse \(... [mehr]

Was sind Sinussatz und Kosinussatz und wann werden sie angewendet?

Der **Sinussatz** und der **Kosinussatz** sind zwei wichtige mathematische Sätze aus der Trigonometrie, die in beliebigen Dreiecken (also nicht nur in rechtwinkligen Dreiecken) verwendet werden.... [mehr]