Um herauszufinden, wie viel Prozent 24 von 38,5 sind, kannst du folgende Rechnung machen: \[ \text{Prozent} = \frac{24}{38,5} \times 100 \] \[ \text{Prozent} = \frac{24}{38,5} \times 100 \approx 62,... [mehr]
Eine proportionale Funktion hat die Form \( f(x) = k \cdot x \), wobei \( k \) eine Konstante ist. Um zu überprüfen, ob eine gegebene Menge von Werten zu einer proportionalen Funktion gehört, kannst du Schritte durchführen: 1. **Verhältnis prüfen**: Berechne das Verhältnis \( \frac{f(x)}{x} \) für verschiedene Werte von \( x \). Wenn dieses Verhältnis konstant ist, handelt es sich um eine proportionale Funktion. 2. **Funktionsgleichung aufstellen**: Wenn du ein konstantes Verhältnis \( k \) gefunden hast, kannst du die Funktionsgleichung aufstellen: \( f(x) = k \cdot x \). Beispiel: - Gegebene Werte: \( (1, 2), (2, 4), (3, 6) \) - Berechnung der Verhältnisse: - \( \frac{2}{1} = 2 \) - \( \frac{4}{2} = 2 \) - \( \frac{6}{3} = 2 \) Da das Verhältnis konstant ist (2), gehört diese Menge von Werten zu einer proportionalen Funktion. Die Funktionsgleichung lautet \( f(x) = 2 \cdot x \).
Um herauszufinden, wie viel Prozent 24 von 38,5 sind, kannst du folgende Rechnung machen: \[ \text{Prozent} = \frac{24}{38,5} \times 100 \] \[ \text{Prozent} = \frac{24}{38,5} \times 100 \approx 62,... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Um den Prozentsatz zu berechnen, teilst du 750 durch 12.945 und multiplizierst das Ergebnis mit 100: \( \frac{750}{12.945} \times 100 = 5,79 \% \) 750 sind also etwa **5,79 %** von 12.945.
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]