Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]
Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbst heraus erscheint – also ohne Rückgriff auf äußere Hilfsmittel oder zusätzliche Annahmen. **Intrinsisch** bedeutet hier, dass die Plausibilität aus den Eigenschaften und Regeln der Geometrie selbst folgt. Eine Konstruktion gilt als intrinsisch plausibel, wenn sie logisch und nachvollziehbar aus den Grundprinzipien der Geometrie (wie z.B. den Euklidischen Axiomen) abgeleitet werden kann. **Beispiel:** Das Konstruieren der Mittelsenkrechten einer Strecke mit Zirkel und Lineal ist intrinsisch plausibel, weil die Schritte direkt aus den Grundregeln der euklidischen Geometrie folgen und sich die Konstruktion anschaulich und logisch erklären lässt. **Zusammengefasst:** Eine geometrische Konstruktion ist dann intrinsisch plausibel, wenn sie aus den grundlegenden Prinzipien der Geometrie logisch ableitbar und anschaulich nachvollziehbar ist, ohne dass externe oder willkürliche Annahmen nötig sind.
Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]
Cohaerentische Geometrie legt Wert darauf, dass geometrische Konstruktionen und Begriffe aus sich selbst heraus, also **intrinsisch**, plausibel und nachvollziehbar sind. Das bedeutet, dass die Defini... [mehr]
Die euklidische Geometrie ist tatsächlich eine der ältesten und am ausführlichsten untersuchten Formen der Geometrie. Sie basiert auf den Axiomen, die erstmals systematisch von Euklid i... [mehr]
Deine Frage scheint sich auf die Kosten („Was kostet…“) oder den Wert („Was leistet…“) der ursprünglichen Geometrie im Vergleich zur euklidischen Geometrie z... [mehr]
Die **ursprüngliche Geometrie** bezieht sich auf die frühen, vorwissenschaftlichen Formen der Geometrie, wie sie in alten Kulturen (z. B. Ägypten, Babylonien) praktiziert wurde. Sie ent... [mehr]
Die Anschneidung von Flächen bezeichnet in der Geometrie und Technik das Verfahren, bei dem zwei oder mehr Flächen so dargestellt oder berechnet werden, dass ihr gemeinsamer Bereich (also di... [mehr]
In der klassischen euklidischen Geometrie werden Geraden als die grundlegenden „Linien“ betrachtet, auf denen die Geometrie aufgebaut ist. In nichteuklidischen Geometrien (wie der hyperbol... [mehr]
Ja, eine Geometrie ohne die klassischen euklidischen Einschränkungen ist möglich und wurde in der Mathematik auch entwickelt. Die euklidische Geometrie basiert auf den fünf berühmt... [mehr]
Ja, das ist möglich. Die ursprüngliche Geometrie, wie sie von den alten Griechen (insbesondere Euklid) entwickelt wurde, basiert auf bestimmten Axiomen und Annahmen – zum Beispiel dem... [mehr]
Die Frage zielt auf einen philosophisch-mathematischen Vergleich zwischen der sogenannten „cohaerentischen Geometrie“ und der klassischen euklidischen Geometrie ab, insbesondere im Hinblic... [mehr]