Wie bestimme ich das Integral von x / (1 + x^2)^2 von 0 bis 1 mit Lösungsweg?

Antwort

Um das Integral \( I = \int_0^1 \frac{x}{(1+x^2)^2} \, dx \) zu bestimmen, kann eine Substitution verwendet werden. Hier ist der Lösungsweg: 1. **Substitution**: Setze \( u = 1 + x^2 \). Dann ist \( du = 2x \, dx \) oder \( \frac{du}{2} = x \, dx \). 2. **Grenzen anpassen**: Wenn \( x = 0 \), dann \( u = 1 \). Wenn \( x = 1 \), dann \( u = 2 \). 3. **Integral umschreiben**: Das Integral wird dann: \[ I = \int_{1}^{2} \frac{1}{u^2} \cdot \frac{du}{2} \] Dies vereinfacht sich zu: \[ I = \frac{1}{2} \int_{1}^{2} u^{-2} \, du \] 4. **Integral berechnen**: Das Integral von \( u^{-2} \) ist \( -u^{-1} \). Also: \[ I = \frac{1}{2} \left[ -u^{-1} \right]_{1}^{2} \] Setze die Grenzen ein: \[ I = \frac{1}{2} \left( -\frac{1}{2} - (-1) \right) \] Dies vereinfacht sich zu: \[ I = \frac{1}{2} \left( -\frac{1}{2} + 1 \right) = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{4} \] Das bestimmte Integral ist also: \[ I = \frac{1}{4} \]

KI fragen

Verwandte Fragen

Wie nennt man es, wenn man eine Gleichung in ein unbestimmtes Integral überführt?

Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Was ist das unbestimmte Integral von x?

Das unbestimmte Integral von \( x \) bezüglich \( x \) lautet: \[ \int x \, dx = \frac{1}{2}x^2 + C \] wobei \( C \) die Integrationskonstante ist.

Wie berechnet man das Integral von 0 bis 0,25 der Funktion 1/(√x * (1-√x)) dx?

Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]

Wie berechnet man das Integral von (ln x)^2 dx?

Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]