Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).
Falsch. In der Funktion der Form \( y = mx + n \) gibt \( m \) die Steigung der Geraden an, während \( n \) den y-Achsenabschnitt darstellt, also den Punkt, an dem die Gerade die y-Achse schneidet. Die Schnittstelle mit der x-Achse wird durch den Wert \( x \) bestimmt, bei dem \( y = 0 \). Um diesen Punkt zu finden, setzt man die Gleichung gleich null und löst nach \( x \) auf: \( 0 = mx + n \).
Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).
Die Umkehrfunktion (auch Inverse Funktion genannt) ist eine Funktion, die die Wirkung einer anderen Funktion rückgängig macht. Wenn du eine Funktion \( f \) hast, die einen Wert \( x \) auf... [mehr]
Die **Hauptwertfunktion** (oft als „hr-Funktion“ abgekürzt) eines Ausdrucks wie \( x+5 \) ist einfach die Funktion selbst, da es sich um eine lineare Funktion handelt. Die Funktionsv... [mehr]
Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm... [mehr]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
**Aufgabenstellung:** Gegeben sind die beiden Polynomfunktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = x^2 - x + 2 \). Berechne die Schnittpunkte der beiden Funktionen mithilfe der Substitu... [mehr]
**Beispielaufgabe:** Gegeben sind die beiden Funktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = -x^2 + 3x \). **Aufgabe:** Bestimme alle Schnittpunkte der beiden Funktionsgraphen. --- **... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]