Wie betrachtet man die Funktion f(x)=2x²+8x+6 mit dem Wertebereich Wf=[−1,5] und der Umkehrfunktion?

Antwort

Um zu überprüfen, ob die Funktion \( f(x) = 2x^2 + 8x + 6 \) den angegebenen Wertebereich \( W_f = [-1, 5] \) hat und ob die Umkehrfunktion korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs von \( f \)**: - Zuerst bestimmen wir die Funktion \( f(x) \) und ihre Extrempunkte. Da es sich um eine quadratische Funktion handelt, können wir die Scheitelpunktform verwenden oder die Ableitung nutzen. - Die Ableitung ist \( f'(x) = 4x + 8 \). Setze \( f'(x) = 0 \) um die Extrempunkte zu finden: \[ 4x + 8 = 0 \implies x = -2 \] - Der Scheitelpunkt liegt also bei \( x = -2 \). Da \( -2 \) nicht im Intervall \( [-1, 5] \) liegt, müssen wir die Funktionswerte an den Randpunkten \( x = -1 \) und \( x = 5 \) berechnen: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \] - Der Funktionswert bei \( x = -2 \) ist: \[ f(-2) = 2(-2)^2 + 8(-2) + 6 = 8 - 16 6 = -2 \] - Der Wertebereich von \( f \) auf dem Intervall \( [-1, 5] \) ist also \( [0, 96] \), nicht \( [-1, 5] \). 2. **Überprüfung der Umkehrfunktion**: - Die angegebene Umkehrfunktion ist \( f^{-1}(x) = -2 - 1 + \sqrt{x^2} \). Diese Form scheint nicht korrekt zu sein, da sie nicht die Form einer Umkehrfunktion einer quadratischen Funktion widerspiegelt. - Um die Umkehrfunktion zu finden, müsste man die Gleichung \( y = 2x^2 + 8x + 6 \) nach \( x \) umstellen, was komplizierter ist und nicht einfach durch die angegebene Formel dargestellt werden kann. Zusammenfassend ist der Wertebereich von \( f \) nicht \( [-1, 5] \), und die angegebene Umkehrfunktion scheint nicht korrekt zu sein.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]