Warum erhält man die Formel für den Flächeninhalt, wenn man die Formel für das Volumen ableitet?

Antwort

Die Ableitung der Volumenformel einer Figur nach einer ihrer Dimensionen ergibt die Formel für den Flächeninhalt der entsprechenden Querschnittsfläche. Dies liegt daran, dass die Ableitung eines Volumens nach einer Dimension die Rate des Volumenwachstums in Bezug auf diese Dimension darstellt, was dem Flächeninhalt des Querschnitts entspricht. Zum Beispiel: - Das Volumen \( V \) eines Zylinders mit der Höhe \( h \) und dem Radius \( r \) ist \( V = \pi r^2 h \). - Leitet man \( V \) nach \( h \) ab, erhält man \( \frac{dV}{dh} = \pi r^2 \), was der Flächeninhalt der Grundfläche des Zylinders ist. Diese Beziehung zeigt, dass die Ableitung des Volumens nach einer Dimension den Flächeninhalt der Querschnittsfläche entlang dieser Dimension ergibt.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Ist die Funktion g(x) = |x-1| + |x-2| differenzierbar?

Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]

Wie lautet die Ableitung von f(x) = Wurzel(2x) unter Verwendung der Kettenregel (innere und äußere Ableitung)?

Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Wie stelle ich einen Term für den Flächeninhalt eines Rechtecks in Abhängigkeit einer Seite auf?

Um einen Term für den Flächeninhalt \( A \) eines Rechtecks in Abhängigkeit von einer Seite aufzustellen, benötigst du die Länge einer Seite (z. B. \( a \)) und einen Ausdruck... [mehr]

Wie groß ist das Fassungsvermögen eines Gefäßes mit den Maßen 80 cm x 30 cm x 40 cm?

Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]

Wie berechnet man die Länge eines Vorfahrtsstraßen-Schildes mit 3600 cm² Fläche und die Fläche des halb so langen gelben Quadrats?

Gegeben: - Fläche des Schildes: \( A_{\text{Schild}} = 3600\,\text{cm}^2 \) - Das gelbe Quadrat ist halb so lang wie das Schild (gemeint ist: die Seitenlänge des Quadrats ist halb so gro&sz... [mehr]