Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die Ableitung der Volumenformel einer Figur nach einer ihrer Dimensionen ergibt die Formel für den Flächeninhalt der entsprechenden Querschnittsfläche. Dies liegt daran, dass die Ableitung eines Volumens nach einer Dimension die Rate des Volumenwachstums in Bezug auf diese Dimension darstellt, was dem Flächeninhalt des Querschnitts entspricht. Zum Beispiel: - Das Volumen \( V \) eines Zylinders mit der Höhe \( h \) und dem Radius \( r \) ist \( V = \pi r^2 h \). - Leitet man \( V \) nach \( h \) ab, erhält man \( \frac{dV}{dh} = \pi r^2 \), was der Flächeninhalt der Grundfläche des Zylinders ist. Diese Beziehung zeigt, dass die Ableitung des Volumens nach einer Dimension den Flächeninhalt der Querschnittsfläche entlang dieser Dimension ergibt.
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um einen Term für den Flächeninhalt \( A \) eines Rechtecks in Abhängigkeit von einer Seite aufzustellen, benötigst du die Länge einer Seite (z. B. \( a \)) und einen Ausdruck... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Gegeben: - Fläche des Schildes: \( A_{\text{Schild}} = 3600\,\text{cm}^2 \) - Das gelbe Quadrat ist halb so lang wie das Schild (gemeint ist: die Seitenlänge des Quadrats ist halb so gro&sz... [mehr]