Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \). **Neue Werte:** - Der Radius wird verdoppelt: \( r_{neu} = 2r \) - Die Höhe wird halbiert: \( h_{neu} = \frac{h}{2} \) Setze die neuen Werte in die Volumenformel ein: \[ V_{neu} = \frac{1}{3} \pi (2r)^2 \left(\frac{h}{2}\right) \] \[ V_{neu} = \frac{1}{3} \pi (4r^2) \left(\frac{h}{2}\right) \] \[ V_{neu} = \frac{1}{3} \pi \cdot 4r^2 \cdot \frac{h}{2} \] \[ V_{neu} = \frac{1}{3} \pi \cdot 2r^2 h \] \[ V_{neu} = 2 \left(\frac{1}{3} \pi r^2 h\right) \] \[ V_{neu} = 2V \] **Fazit:** Das Volumen des Kegels verdoppelt sich.
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
Ein Verbindungsvektor ist ein Vektor, der zwei Punkte im Raum miteinander verbindet. Die wichtigsten Eigenschaften von Verbindungsvektoren sind: 1. **Definition**: Der Verbindungsvektor \(\vec{A... [mehr]
Ein Parallelogramm erkennst du an folgenden Eigenschaften: 1. **Gegenüberliegende Seiten sind parallel**: Die jeweils gegenüberliegenden Seiten verlaufen exakt parallel zueinander. 2. **Geg... [mehr]
Nein, vier Linien können sich im Allgemeinen nicht nur in genau zwei Punkten schneiden. **Begründung:** Wenn sich vier Linien schneiden, gibt es verschiedene Möglichkeiten, wie sie s... [mehr]
Vier Geraden können sich in genau zwei Punkten schneiden, aber nur unter bestimmten Bedingungen: - Zwei der Geraden müssen sich in einem Punkt schneiden. - Die anderen beiden Geraden mü... [mehr]
Vier Geraden können sich auf verschiedene Arten schneiden, je nachdem, wie sie zueinander liegen. Die „Punkte“, die du meinst, sind vermutlich die Schnittpunkte der Geraden. **Allgem... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Ein Torus ist ein geometrischer Körper, der die Form eines „Donuts“ oder „Reifen“ hat. Mathematisch gesehen entsteht ein Torus, wenn man einen Kreis um eine Achse auß... [mehr]