Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um den Ausdruck \((5x + 9y) \cdot 5xz\) zu vereinfachen, multipliziere jeden Term innerhalb der Klammer mit \(5xz\): \[ (5x + 9y) \cdot 5xz = 5x \cdot 5xz + 9y \cdot 5xz \] Nun multipliziere die einzelnen Terme: \[ 5x \cdot 5xz = 25x^2z \] \[ 9y \cdot 5xz = 45xyz \] Setze die beiden Ergebnisse zusammen: \[ 25x^2z + 45xyz \] Der vereinfachte Ausdruck ist also: \[ 25x^2z + 45xyz \]
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Das Zeichen „\times“ steht in der Mathematik für das Multiplikationszeichen (×). Es wird verwendet, um die Multiplikation zweier Zahlen oder Ausdrücke darzustellen. Zum Bei... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Um den Ausdruck \(-2x^4 \cdot (-3x^{-3})\) zu vereinfachen, gehe wie folgt vor: 1. Multipliziere die Zahlen: \(-2 \cdot -3 = 6\) 2. Multipliziere die Potenzen mit gleicher Basis (x): \(x^4 \cd... [mehr]
Der Ausdruck `-1 OR 3*2>5` sieht aus wie ein logischer Ausdruck, wie er in SQL oder Programmiersprachen verwendet wird. - `3*2>5` ergibt `6>5`, was `wahr` (true) ist. - `-1` wird in vielen P... [mehr]
Um den gesuchten Faktor zu berechnen, teilst du 215 durch 92: 215 ÷ 92 ≈ 2,337 Der Faktor ist also ungefähr **2,337**.
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]
Die Rechenaufgabe **540 : 9 : 12** kannst du kürzer als **540 : (9 × 12)** oder **540 : 108** darstellen. Das bedeutet: 540 geteilt durch 9 und das Ergebnis nochmal geteilt durch 12 ist... [mehr]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.