Ist die archimedische Ermittlung des Kreisverhältnisses ein rein geometrisch konstruierter Grenzprozess?

Antwort

Die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses (also der Zahl π) ist tatsächlich ein durchgehend rein geometrisch konstruierter Grenzprozess. Archimedes hat dazu die Methode der Exhaustion verwendet: Er hat in einen Kreis regelmäßige Vielecke ein- und umbeschrieben und deren Umfänge berechnet. Mit steigender Anzahl der Seiten nähern sich die Umfänge der Vielecke dem tatsächlichen Kreisumfang von innen und außen immer weiter an. Der wahre Umfang des Kreises liegt also zwischen dem Umfang des einbeschriebenen und des umbeschriebenen Vielecks. Wichtig ist: Archimedes hat dabei ausschließlich geometrische Konstruktionen und Argumente verwendet, ohne auf algebraische oder analytische Methoden (wie Grenzwertrechnung im modernen Sinn) zurückzugreifen. Der Grenzprozess ist also rein geometrisch, da er auf der sukzessiven Verfeinerung der Vielecke und der Anwendung geometrischer Sätze beruht. Zusammengefasst: Ja, die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses ist ein durchgehend rein geometrisch konstruierter Grenzprozess.

Neue Frage stellen

Verwandte Fragen

Ist eine ursprüngliche Geometrie ohne euklidische Einschränkungen bei Kurven und Grenzprozessen möglich?

Ja, eine Geometrie ohne die klassischen euklidischen Einschränkungen ist möglich und wurde in der Mathematik auch entwickelt. Die euklidische Geometrie basiert auf den fünf berühmt... [mehr]

Liefert Archimedes eine Zahl oder eine Strecke im Vergleich zu einer geometrischen Konstruktion?

Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]

Ist die euklidische Geometrie die ursprüngliche Geometrie oder gibt es Geometrien ohne Einschränkungen?

Die euklidische Geometrie ist tatsächlich eine der ältesten und am ausführlichsten untersuchten Formen der Geometrie. Sie basiert auf den Axiomen, die erstmals systematisch von Euklid i... [mehr]

Was bedeutet ursprüngliche Geometrie ohne euklidische Einschränkungen für Grenzprozesse und die Parabel y = x^2?

Deine Frage scheint sich auf die Kosten („Was kostet…“) oder den Wert („Was leistet…“) der ursprünglichen Geometrie im Vergleich zur euklidischen Geometrie z... [mehr]

Was ist der Unterschied zwischen ursprünglicher Geometrie und euklidischer Geometrie?

Die **ursprüngliche Geometrie** bezieht sich auf die frühen, vorwissenschaftlichen Formen der Geometrie, wie sie in alten Kulturen (z. B. Ägypten, Babylonien) praktiziert wurde. Sie ent... [mehr]

Was bedeutet Anschneidung von Flächen?

Die Anschneidung von Flächen bezeichnet in der Geometrie und Technik das Verfahren, bei dem zwei oder mehr Flächen so dargestellt oder berechnet werden, dass ihr gemeinsamer Bereich (also di... [mehr]

Was bedeutet eine nichteuklidische Geometrie, in der quadratische und kubische Parabeln zugelassen sind, und welche neuen Einsichten ergeben sich daraus?

In der klassischen euklidischen Geometrie werden Geraden als die grundlegenden „Linien“ betrachtet, auf denen die Geometrie aufgebaut ist. In nichteuklidischen Geometrien (wie der hyperbol... [mehr]

Ist eine ursprüngliche Geometrie ohne euklidische Einschränkungen möglich?

Ja, das ist möglich. Die ursprüngliche Geometrie, wie sie von den alten Griechen (insbesondere Euklid) entwickelt wurde, basiert auf bestimmten Axiomen und Annahmen – zum Beispiel dem... [mehr]

Stellt die cohaerentische Geometrie im Vergleich zur euklidischen Geometrie eine ursprüngliche Ursprünglichkeit wieder her?

Die Frage zielt auf einen philosophisch-mathematischen Vergleich zwischen der sogenannten „cohaerentischen Geometrie“ und der klassischen euklidischen Geometrie ab, insbesondere im Hinblic... [mehr]

Ist die cohaerentische Geometrie ohne grundlegende Bedeutung, weil sie nicht im mathematischen Mainstream ist?

Nein, dass die cohaerentische Geometrie bislang nicht im mathematischen Mainstream aufgenommen wurde, bedeutet nicht automatisch, dass sie falsch oder ohne grundleg Bedeutung ist. In der Mathematik gi... [mehr]