Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Um den Ausdruck \[ P(X_1 = i) = \frac{{\binom{1}{1} \cdot \binom{k-1}{0}}}{{\binom{k}{1}}} = \frac{k-1}{k} \] auszuschreiben, müssen die Binomialkoeffizienten aufgelöst werden. Die Binomialkoeffizienten \(\binom{n}{k}\) werden definiert als \(\frac{n!}{k!(n-k)!}\). 1. \(\binom{1}{1}\) bedeutet, wie viele Möglichkeiten es gibt, 1 Element aus 1 Element auszuwählen. Das ist 1, weil \(\binom{1}{1} = \frac{1!}{1!(1-1)!} = \frac{1}{1 \cdot 1} = 1\). 2. \(\binom{k-1}{0}\) bedeutet, wie viele Möglichkeiten es gibt, 0 Elemente aus \(k-1\) Elementen auszuwählen. Das ist ebenfalls 1, weil \(\binom{k-1}{0} = \frac{(k-1)!}{0!(k-1)!} = \frac{(k-1)!}{1 \cdot (k-1)!} = 1\). 3. \(\binom{k}{1}\) bedeutet, wie viele Möglichkeiten es gibt, 1 Element aus \(k\) Elementen auszuwählen. Das ist \(k\), weil \(\binom{k}{1} = \frac{k!}{1!(k-1)!} = \frac{k \cdot (k-1)!}{1 \cdot (k-1)!} = k\). Setzt man diese Werte in den ursprünglichen Ausdruck ein, erhält man: \[ P(X_1 = i) = \frac{\binom{1}{1} \cdot \binom{k-1}{0}}{\binom{k}{1}} = \frac{1 \cdot 1}{k} = \frac{1}{k} \] Es scheint, dass hier ein Fehler vorliegt, da der ursprüngliche Ausdruck \(\frac{k-1}{k}\) ergibt. Der korrekte Ausdruck sollte daher überprüft werden. Wenn der ursprüngliche Ausdruck korrekt ist, dann: \[ P(X_1 = i) = \frac{k-1}{k} \] Dies könnte auf eine andere Herleitung oder einen anderen Kontext hinweisen, der nicht nur auf den Binomialkoeffizienten basiert.
Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Deine Frage ist sehr allgemein formuliert. "50%" kann sich auf viele verschiedene Dinge beziehen, zum Beispiel auf einen Prozentsatz, einen Rabatt, eine Wahrscheinlichkeit oder einen Anteil.... [mehr]
Das Wort „stochastisch“ bezieht sich auf Zufall oder Wahrscheinlichkeiten. In der Mathematik und Statistik beschreibt „stochastisch“ Prozesse, Modelle oder Methoden, bei denen... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass man beim Würfeln nur verschiedene Augenzahlen erhält, muss zunächst klar sein, **wie viele Würfel** geworfen werden. Da das in deiner F... [mehr]
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.