Dein Ausdruck „-1 OR 5*5=25“ sieht aus wie eine Bedingung aus der Logik oder Programmierung. - Im mathematischen Sinne ist 5*5=25 wahr. - Das „OR“ (logisches Oder) bedeutet, d... [mehr]
Um die Aussage \((¬B∨(A∧B))⟹¬A\) zu vereinfachen, können wir die Implikation umformulieren. Eine Implikation \(P \Rightarrow Q\) kann als \(\neg P \lor Q\) geschrieben werden. Daher wird die Aussage: \[ ¬(¬B ∨ (A ∧ B)) ∨ ¬A \] Nun wenden wir De Morgansche Gesetze auf den negierten Teil an: \[ ¬(¬B) ∧ ¬(A ∧ B) ∨ ¬A \] Das vereinfacht sich zu: \[ B ∧ (¬A ∨ ¬B) ∨ ¬A \] Jetzt können wir die Distributivgesetze anwenden: \[ (B ∧ ¬A) ∨ (B ∧ ¬B) ∨ ¬A \] Da \(B ∧ ¬B\) immer falsch ist (also 0), vereinfacht sich das zu: \[ (B ∧ ¬A) ∨ ¬A \] Hier können wir \(¬A\) als gemeinsamen Faktor herausziehen: \[ ¬A ∨ (B ∧ ¬A) \] Das vereinfacht sich weiter zu: \[ ¬A \] Somit ist die vereinfachte Form der ursprünglichen Aussage: \[ ¬A \]
Dein Ausdruck „-1 OR 5*5=25“ sieht aus wie eine Bedingung aus der Logik oder Programmierung. - Im mathematischen Sinne ist 5*5=25 wahr. - Das „OR“ (logisches Oder) bedeutet, d... [mehr]
Der Ausdruck `-1 OR 3*2>5` sieht aus wie ein logischer Ausdruck, wie er in SQL oder Programmiersprachen verwendet wird. - `3*2>5` ergibt `6>5`, was `wahr` (true) ist. - `-1` wird in vielen P... [mehr]
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]
Die Rechenaufgabe **540 : 9 : 12** kannst du kürzer als **540 : (9 × 12)** oder **540 : 108** darstellen. Das bedeutet: 540 geteilt durch 9 und das Ergebnis nochmal geteilt durch 12 ist... [mehr]
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.