Was ist unmöglich: der exakte klassisch konstruierte Prozess des Winkeldrittelns oder die exakte Darstellung der Winkeldrittelgröße?

Antwort

Generell ist das **exakte Winkeldritteln** mit Zirkel und Lineal (klassische Konstruktion) für einen beliebigen Winkel unmöglich. Das bedeutet: Es gibt Winkel, die sich mit diesen klassischen Werkzeugen nicht exakt in drei gleiche Teile teilen lassen. Die **exakte Darstellung der Winkeldrittelgröße** ist hingegen mathematisch möglich, zum Beispiel als Zahl (z. B. \(\cos(\alpha/3)\)), als Lösung einer Gleichung oder mit anderen Hilfsmitteln. Sie ist nur mit Zirkel und Lineal nicht immer konstruierbar. **Fazit:** Unmöglich ist der exakte klassische Konstruktionsprozess des Winkeldrittelns für beliebige Winkel. Die exakte mathematische Darstellung der Winkeldrittelgröße ist hingegen möglich.

KI fragen

Verwandte Fragen

Gibt es eine endliche Winkeldrittel-Konstruktion mit kubischer Parabel und wo wurde sie veröffentlicht?

Ja, es gibt eine endliche Konstruktion zur Winkeldrittelung mit Hilfe einer kubischen Parabel. Während die klassische Winkeldrittelung mit Zirkel und Lineal unmöglich ist, kann sie mit besti... [mehr]

Liefert Archimedes eine Zahl oder eine Strecke im Vergleich zu einer geometrischen Konstruktion?

Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]

Sind die drei klassischen Problemaufgaben der Antike lösbar, wenn es keine Einschränkungen oder Ungleichbehandlungen bei den verwendeten Kurven gibt?

Die drei klassischen Problemaufgaben der Antike sind: 1. **Quadratur des Kreises** (Konstruktion eines Quadrats mit gleichem Flächeninhalt wie ein gegebener Kreis) 2. **Verdopplung des Würf... [mehr]

Gibt es für klassische freie Problemaufgaben der Antike konstruierte Grenzprozesse mit intrinsischer Plausibilität?

Die klassischen freien Problemaufgaben der Antike – also das Quadraturproblem des Kreises, die Dreiteilung des Winkels und die Verdopplung des Würfels – sind mit Zirkel und Lineal nic... [mehr]

Was bedeutet intrinsische Plausibilität geometrischer Konstruktionen?

Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbs... [mehr]

Was ist eine Potenzkaskade und hat sie Bezug zum elementaren Potenz-Konstrukt?

Der Begriff „Potenzkaskade“ ist kein standardisierter mathematischer Fachbegriff, taucht aber gelegentlich in verschiedenen Kontexten auf. Allgemein beschreibt das Wort „Kaskade&ldqu... [mehr]

Hat Wantzel bewiesen, ob eine Winkeldrittelung mit Zirkel und Lineal möglich ist oder hat er zur Darstellung der Winkeldrittelgröße als Zahl beigetragen?

Pierre-Laurent Wantzel hat 1837 einen bedeutenden mathematischen Beweis erbracht, der sich direkt auf das Problem der Winkeldrittelung mit Zirkel und Lineal bezieht. Er zeigte, dass es im Allgemeinen... [mehr]

Kann man Winkel mit endlichen Schritten exakt dritteln?

Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]

Ist das exakte Winkeldritteln mit einem unendlichen Grenzprozess möglich?

Das Winkeldritteln mit Zirkel und Lineal ist in endlich vielen Schritten tatsächlich unmöglich, wie durch die Galoistheorie bewiesen wurde. Die Frage, ob ein exakter unendlicher Grenzprozess... [mehr]

Warum ist ein exaktes Winkeldritteln mit Hilfe der Parabel y = x^2 für beliebige Winkel möglich, obwohl es als unmöglich bewiesen ist?

Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]