Berechne den Steigungswinkel von f(x)=-1,25x+1 und g(x)=-0,25-2,5.

Antwort

Um den Steigungswinkel der beiden Funktionen \( f(x) = -1,25x + 1 \) und \( g(x) = -0,25x - 2,5 \) zu berechnen, benötigen wir die Steigungen der beiden Funktionen. 1. **Steigung von \( f(x) \)**: Die Steigung \( m_f \) ist der Koeffizient von \( x \), also \( m_f = -1,25 \). 2. **Steigung von \( g(x) \)**: Die Steigung \( m_g \) ist ebenfalls der Koeffizient von \( x \), also \( m_g = -0,25 \). Der Steigungswinkel \( \theta \) einer Funktion kann mit der Formel \( \theta = \arctan(m) \) berechnet werden, wobei \( m \) die Steigung ist. Für \( f(x) \): \[ \theta_f = \arctan(-1,25) \] Für \( g(x) \): \[ \theta_g = \arctan(-0,25) \] Um die Winkel in Grad zu erhalten, kann man die Ergebnisse mit \( \frac{180}{\pi} \) multiplizieren. Berechne die Winkel: 1. **Für \( f(x) \)**: \[ \theta_f \approx \arctan(-1,25) \approx -51,34^\circ \] 2. **Für \( g(x) \)**: \[ \theta_g \approx \arctan(-0,25) \approx -14,04^\circ \] Die Steigungswinkel sind also ungefähr \( -51,34^\circ \) für \( f(x) \) und \( -14,04^\circ \) für \( g(x) \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Ist e^(-x^2) eine gerade Funktion?

Ja, die Funktion \( e^{-x^2} \) ist eine gerade Funktion. Eine Funktion \( f(x) \) ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \) im Definitionsbereich der Funktion. Für \( f(x... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie lautet die Gleichung der Symmetriachse des Graphen von g?

Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]