Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( f(x) = -6x^3 + x + 3x \) zu bestimmen, müssen die Werte von \( x \) gefunden werden, für die \( f(x) = 0 \) gilt. Zunächst wird die Funktion vereinfacht: \[ f(x) = -6x^3 + x + 3x \] \[ f(x) = -6x^3 + 4x \] Setze \( f(x) = 0 \): \[ -6x^3 + 4x = 0 \] Faktorisieren der Gleichung: \[ x(-6x^2 + 4) = 0 \] Dies ergibt zwei Faktoren, die jeweils gleich Null gesetzt werden können: 1. \( x = 0 \) 2. \( -6x^2 + 4 = 0 \) Löse die zweite Gleichung: \[ -6x^2 + 4 = 0 \] \[ -6x^2 = -4 \] \[ x^2 = \frac{4}{6} \] \[ x^2 = \frac{2}{3} \] \[ x = \pm \sqrt{\frac{2}{3}} \] \[ x = \pm \frac{\sqrt{6}}{3} \] Die Nullstellen der Funktion sind daher: \[ x = 0, \quad x = \frac{\sqrt{6}}{3}, \quad x = -\frac{\sqrt{6}}{3} \]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
7x² ist ein algebraischer Ausdruck, der bedeutet, dass die Variable x mit sich selbst multipliziert und dann mit 7 multipliziert wird. Es handelt sich um eine quadratische Funktion in Bezug auf x... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]