Bestimme die Gleichung einer nach unten geöffneten Normalparabel, die durch die Punkte P(-2/-5) und Q(2/3) geht.

Antwort

Um die Gleichung der Parabel zu bestimmen, die durch die Punkte \( P(-2, -5) \) und \( Q(2, 3) \) geht, und nach unten geöffnet ist, nehmen wir die allgemeine Form einer Parabel an: \[ y = ax^2 + bx + c \] Da die Parabel nach unten geöffnet ist, muss \( a < 0 \) sein. Wir setzen die Koordinaten der gegebenen Punkte in die Gleichung ein, um ein Gleichungssystem zu erstellen. Für den Punkt \( P(-2, -5) \): \[ -5 = a(-2)^2 + b(-2) + c \] \[ -5 = 4a - 2b + c \quad \text{(1)} \] Für den Punkt \( Q(2, 3) \): \[ 3 = a(2)^2 + b(2) + c \] \[ 3 = 4a + 2b + c \quad \text{(2)} \] Nun haben wir zwei Gleichungen: 1. \( -5 = 4a - 2b + c \) 2. \( 3 = 4a + 2b + c \) Um \( b \) und \( c \) zu eliminieren, subtrahieren wir die erste Gleichung von der zweiten: \[ (4a + 2b + c) - (4a - 2b + c) = 3 - (-5) \] \[ 4a + 2b + c - 4a + 2b - c = 8 \] \[ 4b = 8 \] \[ b = 2 \] Setze \( b = 2 \) in eine der ursprünglichen Gleichungen ein, um \( a \) und \( c \) zu finden. Nehmen wir die erste Gleichung: \[ -5 = 4a - 2(2) + c \] \[ -5 = 4a - 4 + c \] \[ -1 = 4a + c \quad \text{(3)} \] Setze \( b = 2 \) in die zweite Gleichung ein: \[ 3 = 4a + 2(2) + c \] \[ 3 = 4a + 4 + c \] \[ -1 = 4a + c \quad \text{(4)} \] Da die Gleichungen (3) und (4) identisch sind, haben wir nur eine unabhängige Gleichung für \( a \) und \( c \). Wir können \( c \) in Abhängigkeit von \( a \) ausdrücken: \[ c = -1 - 4a \] Setze \( c = -1 - 4a \) in eine der ursprünglichen Gleichungen ein, um \( a \) zu finden. Nehmen wir die erste Gleichung: \[ -5 = 4a - 2(2) + (-1 - 4a) \] \[ -5 = 4a - 4 - 1 - 4a \] \[ -5 = -5 \] Dies bestätigt, dass die Gleichung konsistent ist. Da wir \( b = 2 \) und \( c = -1 - 4a \) haben, setzen wir \( a \) als eine negative Zahl, um die nach unten geöffnete Parabel zu gewährleisten. Nehmen wir an, \( a = -1 \): \[ c = -1 - 4(-1) \] \[ c = -1 + 4 \] \[ c = 3] Somit ist die Gleichung der Parabel: \[ y = -x^2 + 2x + 3 \]

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie setzt man den Punkt P(1/3) in die Gleichung y = ax²?

Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]

Wie löse ich die Gleichung 1a :(2^(-1/2) * a + 1^(-1/2)) nach a auf?

Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]

Warum ist ein exaktes Winkeldritteln mit Hilfe der Parabel y = x^2 für beliebige Winkel möglich, obwohl es als unmöglich bewiesen ist?

Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]

Was ist die Nullstelle einer Normalparabel und wie berechnet man sie?

Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]

Wie führt man Äquivalenzumformungen durch?

Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]

Löse die Gleichung 3x + 7 - 5x - 1 = 0 mit Äquivalenzumformungen und rechne die Probe.

Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]

Was ist eine Äquivalenzumformung?

Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Binomische Formeln?

Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]