Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um die Funktion \( f(x) = 2x^2 + 12x + 26 \) aus einer Normalparabel zu erzeugen, können wir die Schritte zur Umformung und Transformation einer Normalparabel \( g(x) = x^2 \) betrachten. 1. **Faktorisierung**: Zuerst erkennen wir, dass der Koeffizient \( x^2 \) in \( f(x) \) 2 ist. Das bedeutet, dass wir die Normalparabel \( g(x) = x^2 \) mit 2 multiplizieren müssen: \[ f(x) = 2 \cdot g(x) = 2x^2 \] 2. **Verschiebung**: Nun müssen wir die Parabel nach links und oben verschieben. Die Terme \( 12x \) und \( 26 \) müssen in die Gleichung integriert werden. Zuerst vervollständigen wir das Quadrat für den Ausdruck \( 2x^2 + 12x \): \[ 2x^2 + 12x = 2(x^2 + 6x) \] Um \( x^2 + 6x \) zu vervollständigen, fügen wir \( 9 \) hinzu und subtrahieren es: \[ x^2 + 6x = (x + 3)^2 - 9 \] Setzen wir das zurück in die Gleichung ein: \[ 2(x^2 + 6x) = 2((x + 3)^2 - 9) = 2(x + 3)^2 - 18 \] 3. **Endform**: Jetzt fügen wir den konstanten Term \( 26 \) hinzu: \[ f(x) = 2(x + 3)^2 - 18 + 26 = 2(x + 3)^2 + 8 \] Somit haben wir die Funktion \( f(x) \) in der Scheitelpunktform: \[ f(x) = 2(x + 3)^2 + 8 \] Zusammenfassend: Die Funktion \( f(x) = 2x^2 + 12x + 26 \) wird aus der Normalparabel \( g(x) = x^2 \) durch eine Streckung um den Faktor 2, eine Verschiebung um 3 Einheiten nach links und 8 Einheiten nach oben erzeugt.
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]
Die Laplace-Inversionstransformation dient dazu, eine Funktion, die im Laplace-Bereich (also als Laplace-transformierte Funktion \( F(s) \)) vorliegt, wieder in den Zeitbereich (also als Originalfunkt... [mehr]
Ja, man kann von der Definition der Laplace-Transformation sprechen. Die Laplace-Transformation ist eine mathematische Methode, mit der eine Funktion \( f(t) \), die meist für \( t \geq 0 \) defi... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Typische Fragen zur Laplace-Transformation, wie sie häufig in Mathematik-, Ingenieur- oder Physikstudiengängen gestellt werden, sind zum Beispiel: 1. **Definition und Grundlagen** - Was... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]