Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Die kubische Parabel ist eine Kurve, die durch eine kubische Funktion beschrieben wird, typischerweise in der Form \(y = ax^3 + bx^2 + cx + d\). In der klassischen Geometrie bezieht sich "konstruierbar" oft auf die Möglichkeit, ein Objekt nur mit einem Lineal und einem Zirkel zu konstruieren. Die kubische Parabel selbst ist nicht klassisch konstruierbar, da sie nicht durch eine endliche Anzahl von Schritten mit diesen Werkzeugen erzeugt werden kann. Es gibt jedoch spezielle Punkte oder Eigenschaften der Parabel, die mit einem Lineal und Zirkel konstruiert werden können, wie zum Beispiel die Scheitelpunkte oder Schnittpunkte mit anderen Linien. Zusammenfassend lässt sich sagen, dass die gesamte kubische Parabel nicht klassisch konstruierbar ist, aber bestimmte Aspekte oder Punkte darauf konstruiert werden können.
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Ja, es gibt eine endliche Konstruktion zur Winkeldrittelung mit Hilfe einer kubischen Parabel. Während die klassische Winkeldrittelung mit Zirkel und Lineal unmöglich ist, kann sie mit besti... [mehr]
Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]
Ja, es gibt determinierte (also festgelegte, nicht-probierende) Konstruktionen, mit denen man einem gedrittelten Winkel beliebig genau näherkommen kann – allerdings immer nur näherungs... [mehr]
Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]