Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Die kubische Parabel ist eine Kurve, die durch eine kubische Funktion beschrieben wird, typischerweise in der Form \(y = ax^3 + bx^2 + cx + d\). In der klassischen Geometrie bezieht sich "konstruierbar" oft auf die Möglichkeit, ein Objekt nur mit einem Lineal und einem Zirkel zu konstruieren. Die kubische Parabel selbst ist nicht klassisch konstruierbar, da sie nicht durch eine endliche Anzahl von Schritten mit diesen Werkzeugen erzeugt werden kann. Es gibt jedoch spezielle Punkte oder Eigenschaften der Parabel, die mit einem Lineal und Zirkel konstruiert werden können, wie zum Beispiel die Scheitelpunkte oder Schnittpunkte mit anderen Linien. Zusammenfassend lässt sich sagen, dass die gesamte kubische Parabel nicht klassisch konstruierbar ist, aber bestimmte Aspekte oder Punkte darauf konstruiert werden können.
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]