Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]
Die Winkeldrittelung mit einer Parabel kann durch die Verwendung einer speziellen geometrischen Konstruktion erreicht werden. Eine Möglichkeit, dies zu tun, ist die Verwendung einer Parabel, die durch einen Punkt auf dem Winkel einen Punkt auf der gegenüberliegenden Seite des Winkels verläuft. Hier ist eine allgemeine Vorgehensweise: 1. Zeichne den Winkel, den du dritteln möchtest. 2. Wähle einen Punkt auf dem Schenkel des Winkels und einen Punkt auf der gegenüberliegenden Seite. 3. Konstruiere eine Parabel, die durch diese beiden Punkte verläuft. 4. Der Schnittpunkt der Parabel mit dem anderen Schenkel des Winkels gibt dir den Punkt, der den Winkel in drei gleich große Teile teilt. Die genaue Gleichung der Parabel hängt von den spezifischen Punkten ab, die du wählst. Eine allgemeine Form der Parabel ist \( y = ax^2 + bx + c \), wobei \( a \), \( b \) und \( c \) Konstanten sind, die du entsprechend den gewählten Punkten bestimmen kannst. Für eine präzisere Konstruktion wäre es hilfreich, die genauen Koordinaten der Punkte zu kennen, um die spezifische Gleichung der Parabel zu bestimmen.
Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Ja, es gibt eine endliche Konstruktion zur Winkeldrittelung mit Hilfe einer kubischen Parabel. Während die klassische Winkeldrittelung mit Zirkel und Lineal unmöglich ist, kann sie mit besti... [mehr]
Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]
Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]
Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]