Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Die Winkeldrittelung mit einer Parabel kann durch die Verwendung einer speziellen geometrischen Konstruktion erreicht werden. Eine Möglichkeit, dies zu tun, ist die Verwendung einer Parabel, die durch einen Punkt auf dem Winkel einen Punkt auf der gegenüberliegenden Seite des Winkels verläuft. Hier ist eine allgemeine Vorgehensweise: 1. Zeichne den Winkel, den du dritteln möchtest. 2. Wähle einen Punkt auf dem Schenkel des Winkels und einen Punkt auf der gegenüberliegenden Seite. 3. Konstruiere eine Parabel, die durch diese beiden Punkte verläuft. 4. Der Schnittpunkt der Parabel mit dem anderen Schenkel des Winkels gibt dir den Punkt, der den Winkel in drei gleich große Teile teilt. Die genaue Gleichung der Parabel hängt von den spezifischen Punkten ab, die du wählst. Eine allgemeine Form der Parabel ist \( y = ax^2 + bx + c \), wobei \( a \), \( b \) und \( c \) Konstanten sind, die du entsprechend den gewählten Punkten bestimmen kannst. Für eine präzisere Konstruktion wäre es hilfreich, die genauen Koordinaten der Punkte zu kennen, um die spezifische Gleichung der Parabel zu bestimmen.
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).