Um den Ausdruck \( x^2 - 6 - (x + 2)(x - 2) + 2x \) zu vereinfachen, folge diesen Schritten: 1. Berechne das Produkt \( (x + 2)(x - 2) \): \[ (x + 2)(x - 2 = x^2 4 ] 2. Setze das Ergebnis in... [mehr]
Um den angegebenen Faktor aus dem Ausdruck \( 18x^2 - 32x \) zu verfeinern, kannst du zunächst den größten gemeinsamen Faktor (GGF) der beiden Terme finden. 1. Bestimme den GGF von \( 18 \) und \( 32 \). Der GGF ist \( 2 \). 2. Bestimme den GGF der Variablen \( x^2 \) und \( x \). Der GGF ist \( x \). Somit ist der gesamte GGF \( 2x \). Jetzt kannst du den Ausdruck faktorisieren: \[ 18x^2 - 32x = 2x(9x - 16) \] Der faktorisierte Ausdruck ist also \( 2x(9x - 16) \).
Um den Ausdruck \( x^2 - 6 - (x + 2)(x - 2) + 2x \) zu vereinfachen, folge diesen Schritten: 1. Berechne das Produkt \( (x + 2)(x - 2) \): \[ (x + 2)(x - 2 = x^2 4 ] 2. Setze das Ergebnis in... [mehr]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \((x + 6)(x + 6)\) zu vereinfachen, kannst du die binomische Formel verwenden. Dies ist ein Quadrat eines Binoms, das wie folgt aussieht: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem... [mehr]
Um die Probe für \( p = 2 \) und \( q = \frac{1}{2} \) durchzuführen, setzen wir die Werte in den Ausdruck \( (p^2 + pq + q^2)(p - q) \) ein. 1. Berechne \( p^2 \): \[ p^2 = 2^2 = 4... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]