Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Definitionsmenge und die Lösungsmenge der gegebenen Gleichung zu bestimmen, gehen wir wie folgt vor: Die gegebene Gleichung lautet: \[ \frac{4}{x+1} - \frac{7}{4x+4} = \frac{3}{2x-2} \] ### 1. Definitionsmenge bestimmen Die Definitionsmenge umfasst alle Werte von \( x \), für die die Gleichung definiert ist. Das bedeutet, dass die Nenner der Brüche nicht null sein dürfen. - \( x + 1 \neq 0 \) ⟹ \( x \neq -1 \) - \( 4x + 4 \neq 0 \) ⟹ \( 4(x + 1) \neq 0 \) ⟹ \( x \neq -1 \) - \( 2x - 2 \neq 0 \) ⟹ \( 2(x - 1) \neq 0 \) ⟹ \( x \neq 1 \) Also ist die Definitionsmenge: \[ D = \mathbb{R} \setminus \{-1, 1\} \] ### 2. Gleichung lösen Um die Gleichung zu lösen, bringen wir sie auf einen gemeinsamen Nenner. Der gemeinsame Nenner der Brüche ist \( (x+1)(2x-2) \). Schreibe die Gleichung um: \[ \frac{4(2x-2)}{(x+1)(2x-2)} - \frac{7(x+1)}{(x+1)(2x-2)} = \frac{3(x+1)}{(x+1)(2x-2)} \] Multipliziere beide Seiten der Gleichung mit dem gemeinsamen Nenner \( (x+1)(2x-2) \), um die Brüche zu eliminieren: \[ 4(2x-2) - 7(x+1) = 3(x+1) \] Vereinfache die Gleichung: \[ 8x - 8 - 7x - 7 = 3x + 3 \] \[ x - 15 = 3x + 3 \] Bringe alle \( x \)-Terme auf eine Seite und die konstanten Terme auf die andere Seite: \[ x - 3x = 3 + 15 \] \[ -2x = 18 \] \[ x = -9 \] ### 3. Überprüfen, ob die Lösung in der Definitionsmenge liegt Die Lösung \( x = -9 \) liegt in der Definitionsmenge \( D = \mathbb{R} \setminus \{-1, 1\} \). ### 4. Lösungsmenge Die Lösungsmenge ist: \[ L = \{-9\} \]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **... [mehr]
Die Gleichung „ein halb mal X gleich 50“ kannst du mathematisch so aufschreiben: \[\frac{1}{2} \cdot x = 50\] Das ist die gesuchte Gleichung.
Um von der Gleichung \( 8 = \frac{1}{3^x} \) auf \( x^3 = \frac{1}{8} \) zu kommen, musst du die Gleichung so umformen, dass \( x \) isoliert wird und dann beide Seiten umstellen. Hier ist der Rechenw... [mehr]
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]