Wie regelt man den Definitionsbereich?

Antwort

Der Definitionsbereich einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Hier sind einige allgemeine Regeln, um den Definitionsbereich zu bestimmen: 1. **Brüche**: Der Nenner darf nicht null sein. Beispiel: Bei \( f(x) = \frac{1}{x-2} \) darf \( x \) nicht 2 sein, also ist der Definitionsbereich \( \mathbb{R} \setminus \{2\} \). 2. **Wurzeln**: Der Ausdruck unter der Wurzel muss nicht-negativ sein. Beispiel: Bei \( f(x) = \sqrt{x-3} \) muss \( x-3 \geq 0 \) sein, also ist der Definitionsbereich \( [3, \infty) \). 3. **Logarithmen**: Der Ausdruck innerhalb des Logarithmus muss positiv sein. Beispiel: Bei \( f(x) = \log(x-1) \) muss \( x-1 > 0 \) sein, also ist der Definitionsbereich \( (1, \infty) \). 4. **Trigonometrische Funktionen**: Bestimmte trigonometrische Funktionen haben Einschränkungen. Beispiel: Bei \( f(x) = \tan(x) \) darf \( x \) nicht \( \frac{\pi}{2} + k\pi \) (für \( k \in \mathbb{Z} \)) sein, da der Tangens an diesen Stellen nicht definiert ist. 5. **Allgemeine Polynomfunktionen**: Diese sind für alle reellen Zahlen definiert. Beispiel: Bei \( f(x) = x^2 + 3x + 2 \) ist der Definitionsbereich \( \mathbb{R} \). Um den Definitionsbereich einer spezifischen Funktion zu bestimmen, musst du die oben genannten Regeln auf die Funktion anwenden und alle Einschränkungen berücksichtigen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Was ist 7x²?

7x² ist ein algebraischer Ausdruck, der bedeutet, dass die Variable x mit sich selbst multipliziert und dann mit 7 multipliziert wird. Es handelt sich um eine quadratische Funktion in Bezug auf x... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Gleichungen lösen?

Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Löse die Gleichung 7 + 3x = 8 + (8x - 6) und gib die Lösungsmenge an.

Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]

Nenne zwei Aufgaben zu positiven und negativen Zahlen beim Multiplizieren und Dividieren.

Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]