Wie regelt man den Definitionsbereich?

Antwort

Der Definitionsbereich einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Hier sind einige allgemeine Regeln, um den Definitionsbereich zu bestimmen: 1. **Brüche**: Der Nenner darf nicht null sein. Beispiel: Bei \( f(x) = \frac{1}{x-2} \) darf \( x \) nicht 2 sein, also ist der Definitionsbereich \( \mathbb{R} \setminus \{2\} \). 2. **Wurzeln**: Der Ausdruck unter der Wurzel muss nicht-negativ sein. Beispiel: Bei \( f(x) = \sqrt{x-3} \) muss \( x-3 \geq 0 \) sein, also ist der Definitionsbereich \( [3, \infty) \). 3. **Logarithmen**: Der Ausdruck innerhalb des Logarithmus muss positiv sein. Beispiel: Bei \( f(x) = \log(x-1) \) muss \( x-1 > 0 \) sein, also ist der Definitionsbereich \( (1, \infty) \). 4. **Trigonometrische Funktionen**: Bestimmte trigonometrische Funktionen haben Einschränkungen. Beispiel: Bei \( f(x) = \tan(x) \) darf \( x \) nicht \( \frac{\pi}{2} + k\pi \) (für \( k \in \mathbb{Z} \)) sein, da der Tangens an diesen Stellen nicht definiert ist. 5. **Allgemeine Polynomfunktionen**: Diese sind für alle reellen Zahlen definiert. Beispiel: Bei \( f(x) = x^2 + 3x + 2 \) ist der Definitionsbereich \( \mathbb{R} \). Um den Definitionsbereich einer spezifischen Funktion zu bestimmen, musst du die oben genannten Regeln auf die Funktion anwenden und alle Einschränkungen berücksichtigen.

KI fragen

Verwandte Fragen

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Wie rundet man 45 auf die nächste Zehnerstelle?

45 auf die nächste 10 gerundet ergibt 50.

Ist 0 durch 0 dasselbe wie 0 durch 1?

Die Gleichung „0 durch 0 = 0 durch 1“ ist mathematisch nicht korrekt. - **0 durch 0** (also \( \frac{0}{0})) ist **nicht definiert**. Das liegt daran, dass jede Zahl mal 0 wieder 0 ergibt... [mehr]

Was bedeutet das Symbol \times?

Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]

Wie kann ich eine Funktion in der Mitte einer anderen Gleichung verwenden?

Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]

Was ist eine geometrische Entität?

Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]

Wie viel Prozent sind 6.861 von 81.740?

Um den Prozentsatz zu berechnen, teilst du 6.861 durch 81.740 und multiplizierst das Ergebnis mit 100: \( \frac{6.861}{81.740} \times 100 = 8,39 \% \) 6.861 sind also etwa **8,39 %** von 81.740.

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Welche Eigenschaften kann eine Sinusfunktion besitzen?

Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]

Wie sieht eine Differentialgleichung aus und wie löst man sie?

Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwindigkeit, Popula... [mehr]