Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Der Definitionsbereich einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Hier sind einige allgemeine Regeln, um den Definitionsbereich zu bestimmen: 1. **Brüche**: Der Nenner darf nicht null sein. Beispiel: Bei \( f(x) = \frac{1}{x-2} \) darf \( x \) nicht 2 sein, also ist der Definitionsbereich \( \mathbb{R} \setminus \{2\} \). 2. **Wurzeln**: Der Ausdruck unter der Wurzel muss nicht-negativ sein. Beispiel: Bei \( f(x) = \sqrt{x-3} \) muss \( x-3 \geq 0 \) sein, also ist der Definitionsbereich \( [3, \infty) \). 3. **Logarithmen**: Der Ausdruck innerhalb des Logarithmus muss positiv sein. Beispiel: Bei \( f(x) = \log(x-1) \) muss \( x-1 > 0 \) sein, also ist der Definitionsbereich \( (1, \infty) \). 4. **Trigonometrische Funktionen**: Bestimmte trigonometrische Funktionen haben Einschränkungen. Beispiel: Bei \( f(x) = \tan(x) \) darf \( x \) nicht \( \frac{\pi}{2} + k\pi \) (für \( k \in \mathbb{Z} \)) sein, da der Tangens an diesen Stellen nicht definiert ist. 5. **Allgemeine Polynomfunktionen**: Diese sind für alle reellen Zahlen definiert. Beispiel: Bei \( f(x) = x^2 + 3x + 2 \) ist der Definitionsbereich \( \mathbb{R} \). Um den Definitionsbereich einer spezifischen Funktion zu bestimmen, musst du die oben genannten Regeln auf die Funktion anwenden und alle Einschränkungen berücksichtigen.
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
7x² ist ein algebraischer Ausdruck, der bedeutet, dass die Variable x mit sich selbst multipliziert und dann mit 7 multipliziert wird. Es handelt sich um eine quadratische Funktion in Bezug auf x... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]