Was ist die Winkelhalbierende eines Dreiecks?

Antwort

Die Winkelhalbierende eines Dreiecks ist eine Linie, die einen Winkel des Dreiecks in zwei gleich große Winkel teilt. Sie verläuft von einem der Eckpunkte des Dreiecks bis zur gegenüberliegenden Seite. In einem Dreieck gibt es drei Winkelhalbierende, eine für jeden Winkel. Die Winkelhalbierenden eines Dreiecks treffen sich in einem Punkt, der als Incenter bezeichnet wird. Dieser Punkt ist der Mittelpunkt des Inkreises, also des größten Kreises, der innerhalb des Dreiecks liegt und alle Seiten berührt.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Ist jeder Würfel ein Prisma?

Ja, jeder Würfel ist ein spezielles Prisma. Ein Prisma ist ein geometrischer Körper, der zwei parallele Flächen (die Basen) hat, die durch rechteckige Seitenflächen verbunden sind.... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Hypotenuse 2,5 cm, Gegenkathete 3 cm und Ankathete 3,9 cm?

In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]

Was ist Sin( Alpha) eines Dreiecks mit Hypotenuse 4 cm, Ankathete 3,4 cm und Gegenkathete 2,1 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]

Existiert dieses Dreieck? a=8,5cm; b=3,2cm; c=5,2cm?

Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]