Ändert sich die Ableitung bei Verschiebung entlang der y-Achse?

Antwort

Ja, die Ableitung einer Funktion ändert sich nicht, wenn die Funktion entlang der y-Achse verschoben wird. Eine Verschiebung an der y-Achse bedeutet, dass du zu den Funktionswerten einen konstanten Wert addierst oder subtrahierst. Diese Verschiebung beeinflusst die Steigung der Funktion nicht, da die Ableitung die Änderungsrate der Funktion beschreibt. Wenn du beispielsweise die Funktion \( f(x) \) hast und sie um \( c \) Einheiten nach oben verschiebst, erhältst du die neue Funktion \( g(x) = f(x) + c \). Die Ableitung bleibt gleich: \( g'(x) = f'(x) \).

Neue Frage stellen

Verwandte Fragen

Was sind Extremwertaufgaben?

Extremwertaufgaben sind ein zentrales Thema in der Mathematik, insbesondere in der Analysis. Sie beschäftigen sich mit der Frage, wie man den größten oder kleinsten Wert (also ein Maxi... [mehr]

Was ist eine Kurvendiskussion?

Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm... [mehr]

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

Wie lautet die Ableitung von f(x)=e^(a*x)?

Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.

Ist die Funktion g(x) = |x-1| + |x-2| differenzierbar?

Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]