Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.
Ja, die Ableitung einer Funktion ändert sich nicht, wenn die Funktion entlang der y-Achse verschoben wird. Eine Verschiebung an der y-Achse bedeutet, dass du zu den Funktionswerten einen konstanten Wert addierst oder subtrahierst. Diese Verschiebung beeinflusst die Steigung der Funktion nicht, da die Ableitung die Änderungsrate der Funktion beschreibt. Wenn du beispielsweise die Funktion \( f(x) \) hast und sie um \( c \) Einheiten nach oben verschiebst, erhältst du die neue Funktion \( g(x) = f(x) + c \). Die Ableitung bleibt gleich: \( g'(x) = f'(x) \).
Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]