Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Die Wurzel aus 2 geteilt durch die Wurzel aus 10 kann mathematisch wie folgt dargestellt werden: \[ \frac{\sqrt{2}}{\sqrt{10}} = \sqrt{\frac{2}{10}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] Um das Ergebnis weiter zu vereinfachen, kann man den Bruch rationalisieren: \[ \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} \] Das Ergebnis ist also: \[ \frac{\sqrt{5}}{5} \]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]
Um \( \frac{4}{7} \) mal \( \frac{11}{8} \) zu berechnen, multiplizierst du die Zähler miteinander und die Nenner miteinander: \[ \frac{4 \times 11}{7 \times 8} = \frac{44}{56} \] Nun kannst du... [mehr]
1 plus 293492841 ergibt 293492842.
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
Der gemeinsame Nenner von 445 und 1000 ist das kleinste gemeinsame Vielfache (kgV) dieser beiden Zahlen. Um das kgV zu finden, zerlegen wir beide Zahlen in ihre Primfaktoren: - 445 = 5 × 89 - 1... [mehr]
1/2 mal fünf ergibt 2,5.
0,5 als Bruch kann als 1/2 dargestellt werden.