Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Die Vereinfachung von \(\sqrt{3a} \cdot \sqrt{3a}\) erfolgt wie folgt: \[ \sqrt{3a} \cdot \sqrt{3a} = \sqrt{(3a) \cdot (3a)} = \sqrt{(3a)^2} = 3a \] Das Ergebnis ist also \(3\).
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
1/2 mal fünf ergibt 2,5.
Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]
Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
8 ⋅ (–1,9) = –15,2.
3 ⋅ (–1,6) = –4,8.