Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]
In einem allgemeinen Dreieck gibt es drei Seitenlängen, die in der Regel mit den Buchstaben a, b und c bezeichnet werden. Diese Seitenlängen können unterschiedlich lang sein und bestimmen die Form und Größe des Dreiecks. Die Summe der Längen zweier Seiten muss immer größer sein als die Länge der dritten Seite (Dreiecksungleichung).
Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]
Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Ei... [mehr]
Du meinst vermutlich Nikolai Iwanowitsch Lobatschewski (auch geschrieben Lobachevski oder Lobachevsky). Er war ein russischer Mathematiker, der vor allem für seine Arbeiten zur nicht-euklidischen... [mehr]
Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]
Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform):... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]