Bei einer zentrischen Streckung wird die Fläche und der Umfang eines geometrischen Körpers durch den Streckfaktor k beeinflusst. 1. **Flächeninhalt nach der Streckung**: Der neue F... [mehr]
Um die Seitenlängen eines rechtwinkligen Dreiecks zu berechnen, wenn zwei Seitenlängen und der Flächeninhalt bekannt sind, kann man die folgenden Schritte durchführen: 1. **Überprüfen der gegebenen Werte:** - Gegebene Seitenlängen: \( a = 8 \, \text{cm} \) und \( b = 6 \, \text{cm} \) - Gegebener Flächeninhalt: \( A = 24 \, \text{cm}^2 \) 2. **Berechnung des Flächeninhalts:** Der Flächeninhalt \( A \) eines rechtwinkligen Dreiecks kann mit der Formel berechnet werden: \[ A = \frac{1}{2} \cdot a \cdot b \] Setze die gegebenen Werte ein: \[ A = \frac{1}{2} \cdot 8 \, \text{cm} \cdot 6 \, \text{cm} = \frac{1}{2} \cdot 48 \, \text{cm}^2 = 24 \, \text{cm}^2 \] Der gegebene Flächeninhalt stimmt also mit den berechneten Werten überein. 3. **Berechnung der Hypotenuse:** Da es sich um ein rechtwinkliges Dreieck handelt, kann die Länge der Hypotenuse \( c \) mit dem Satz des Pythagoras berechnet werden: \[ c = \sqrt{a^2 + b^2} \] Setze die gegebenen Werte ein: \[ c = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \, \text{cm} \] **Zusammenfassung der Seitenlängen:** - \( a = 8 \, \text{cm} \) - \( b = 6 \, \text{cm} \) - \( c = 10 \, \text{cm} \) Der Flächeninhalt von \( 24 \, \text{cm}^2 \) wurde korrekt berechnet und bestätigt, dass die gegebenen Seitenlängen korrekt sind.
Bei einer zentrischen Streckung wird die Fläche und der Umfang eines geometrischen Körpers durch den Streckfaktor k beeinflusst. 1. **Flächeninhalt nach der Streckung**: Der neue F... [mehr]
Um den Flächeninhalt eines Kreises zu berechnen, wenn du nur den Durchmesser hast, kannst du folgende Schritte befolgen: 1. **Durchmesser in den Radius umrechnen: Der Radius ist die Hälfte... [mehr]
Um den Flächeninhalt eines Kreises zu berechnen, wenn du nur den Durchmesser hast, kannst du folgende Schritte befolgen: 1. **Durchmesser in den Radius umrechnen**: Der Radius \( r \) ist die H&... [mehr]
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Der Flächeninhalt \( A \) eines Kreises kann mit der Formel \( A = \pi r^2 \) berechnet werden, wobei \( r \) der Radius des Kreises ist. Der Radius ist die Hälfte des Durchmessers. In dies... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]
Um den Außendurchmesser zu berechnen, wenn der Innendurchmesser und der Flächeninhalt gegeben sind, kannst du folgende Schritte befolgen: 1. **Innendurchmesser (d_in)**: Dieser ist gegeben... [mehr]