Für welche Zahlen n lassen die Quadratzahlen bei Division durch 8 den Rest 0?

Antwort

Ja, das kann ich. Um zu beweisen, für welche Zahlen \( n \) die Quadratzahlen \( n^2 \) bei Division durch 8 den Rest 0 lassen, können wir die möglichen Reste \( n \) bei Division durch 8 betrachten. Diese Reste sind 0, 1, 2, 3, 4, 5, 6 und 7. Wir untersuchen nun die Quadrate dieser Reste modulo 8: 1. \( n \equiv 0 \pmod{8} \) \[ n^2 \equiv 0^2 \equiv 0 \pmod{8} \] 2. \( n \equiv 1 \pmod{8} \) \[ n^2 \equiv 1^2 \equiv 1 \pmod{8} \] 3. \( n \equiv 2 \pmod{8} \) \[ n^2 \equiv 2^2 \equiv 4 \pmod{8} \] 4. \( n \equiv 3 \pmod{8} \) \[ n^2 \equiv 3^2 \equiv 9 \equiv 1 \pmod{8} \] 5. \( n \equiv 4 \pmod{8} \) \[ n^2 \equiv 4^2 \equiv 16 \equiv 0 \pmod{8} \] 6. \( n \equiv 5 \pmod{8} \) \[ n^2 \equiv 5^2 \equiv 25 \equiv 1 \pmod{8} \] 7. \( n \equiv 6 \pmod{8} \) \[ n^2 \equiv 6^2 \equiv 36 \equiv 4 \pmod{8} \] 8. \( n \equiv 7 \pmod{8} \) \[ n^2 \equiv 7^2 \equiv 49 \equiv 1 \pmod{8} \] Aus diesen Berechnungen sehen wir, dass \( n^2 \equiv 0 \pmod{8} \) nur dann gilt, wenn \( n \equiv 0 \pmod{8} \) oder \( n \equiv 4 \pmod{8} \). Das bedeutet, dass \( n \) eine Zahl der Form \( 8k \) oder \( 8k + 4 \) sein muss, wobei \( k \) eine ganze Zahl ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie rechne ich 102 geteilt durch 17 schriftlich mit Rechenschritten?

Hier ist die schriftliche Division von 102 durch 17 Schritt für Schritt erklärt: **1. Schritt:** Überlege, wie oft 17 in die 102 passt. **2. Schritt:** 17 passt in 102 insgesamt 6... [mehr]

Wie berechnet man 102 geteilt durch 17?

Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.

Was ist zehn Milliarden geteilt durch 75 Millionen?

Zehn Milliarden geteilt durch 75 Millionen ergibt: 10.000.000.000 ÷ 75.000.000 = 133,33 (gerundet auf zwei Nachkommastellen).

Welche möglichen Reste entstehen beim Dividieren durch 2, 3, 4, 7 und 9?

Beim Dividieren einer Zahl durch einen Divisor bleiben als Rest (auch "Modulo" genannt) immer die Zahlen von 0 bis zum Divisor minus 1. Das bedeutet: a) Beim Dividieren durch **2**: mö... [mehr]

Welche drei Divisionaufgaben ergeben jeweils die Quotienten 5, 2 und 10?

a) Der Quotient ist 5: 1. 25 : 5 = 5 2. 35 : 7 = 5 3. 40 : 8 = 5 b) Der Quotient ist 2: 1. 10 : 5 = 2 2. 8 : 4 = 2 3. 18 : 9 = 2 c) Der Quotient ist 10: 1. 100 : 10 = 10 2. 70 :... [mehr]

Wann ergibt A-B×C÷D mathematisch Unendlichkeit?

Die Gleichung „A - B × C ÷ D = ENDLOSIGKEIT“ ist mathematisch nicht eindeutig, da „ENDLOSIGKEIT“ kein standardmäßiger mathematischer Begriff ist. Vermut... [mehr]

Wie berechnet man den Quotienten aus a und -4?

Der Quotient aus \( a \) und \(-4\) ist \(\frac{a}{-4}\) oder auch \( -\frac{a}{4} \).

Ist die Riemannsche Vermutung bewiesen?

Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]

Einfacher Rechenweg 5250:3500?

Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]

Beweis des Satzes von Vieta

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]