Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Gesucht ist die kleinste Primzahl, die als Summe dreier aufeinanderfolgender Quadratzahlen geschrieben werden kann. Bezeichne die drei aufeinanderfolgenden Zahlen als \( n-1 \), \( n \), \( n+1 \). Deren Quadrate sind: \[ (n-1)^2, \quad n^2, \quad (n+1)^2 \] Die Summe ist: \[ (n-1)^2 + n^2 + (n+1)^2 = (n^2 - 2n + 1) + n^2 + (n^2 + 2n + 1) \] \[ = n^2 - 2n + 1 + n^2 + n^2 + 2n + 1 \] \[ = 3n^2 + 2 \] Nun suchen wir die kleinste Primzahl, die sich als \( 3n^2 + 2 \) schreiben lässt. Setze n = 1: \[ 3 \cdot 1^2 + 2 = 3 + 2 = 5 \quad \text{(Primzahl)} \] Setze n = 2: \[ 3 \cdot 4 + 2 = 12 + 2 = 14 \quad \text{(keine Primzahl)} \] Setze n = 3: \[ 3 \cdot 9 + 2 = 27 + 2 = 29 \quad \text{(Primzahl)} \] Die kleinste ist also **5**. **Antwort:** Die kleinste Primzahl, die als Summe dreier aufeinanderfolgender Quadratzahlen geschrieben werden kann, ist **5**.
Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
a) Rechenausdruck: 99 – (44 + 33) Berechnung: 99 – (44 + 33) = 99 – 77 = **22** b) Rechenausdruck: 86 + (77 + 33) Berechnung: 86 + (77 + 33) = 86 + 110 = **196**
Die Frage ist, ob man mit der **Summe oder Differenz von Primzahlen** alle Zahlen von **0 bis 255** darstellen kann – und falls ja, mit welchen Primzahlen. ### Analyse - **Primzahlen** sind na... [mehr]
Die Summe aus sechs und sechs ist zwölf.
Um zu erkennen, ob eine große Zahl eine Primzahl ist, gibt es verschiedene Methoden. Für sehr große Zahlen werden meist spezielle Algorithmen verwendet, da das klassische Probieren al... [mehr]