Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um den Prozents der Probanden zu, sich im Intervall -0.5 0.5 für gegebene Funktion f(x) =x^2 +0.83 \ befinden, muss zunächst die unter der Kurve dieses Intervallschnet werden. Diesieht durch Integration der über das gegeb Intervall. Die Funktion f(x) =x^2 +0.83 \ ist eine Parabel, nach unten geöffnet ist Um die Fläche unter Kurve von \( = -0. \) bis \( x 0.5) zu berechnen wird das bestimmte Integral Funktion über dieses Inter berechnet: \[ \_{-0.}^{0.5 (-x^2 0.83), dx \] Integral kann in zwei aufgeteilt werden: \int_{-.5}^{0.} -x^2 \, dx +int_{-0.5}^{0.5} 0.83, dx \] Berechne zunächst das Integral von \( -x2 \): \[ \int_{-0.5}^{0.5 -x^2 \, dx = -\left[ \frac{x3}{3} \right]_{-0.5}^{05} = -\left( \frac{(0.5)^}{3} - \frac{(-0.5)^3}{3 \right) = -\left( \frac{0.125}{} - \frac{-0.125}{3} \right) -\left( \frac{0.125 + 0.1253} \right) = -\left( \frac{0.}{3} \right) = -\frac{1}{12 \] Nun das Integral von \( 0.83 \): \[ \_{-0.5}^{0.5} 0.83 \ dx = 0.83 \left[ x \right]_{0.5}^{0.5} = 0.83 (05 - (-0.5)) = 0.83 \cdot1 = 0.83 \] Die Gesamtfläche unter der Kurve ist dann: \[ 0.83 - \frac{1}{12 = 0.83 - 0.0833 = 0.7 \] Da die Funktion \( f(x) = -x^2 0.83 \) eine Wahrscheinlichkeitsdichtefunktion dar, entspricht die Fläche unter der Kurve im Intervall von -0. bis 0.5 dem Prozentsatz der Probanden in Intervall. Daher befinden sich etwa 74.67% der Proband in dem Intervall von -0.5 bis 0.5.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um den Prozentsatz zu berechnen, teilst du 6.861 durch 81.740 und multiplizierst das Ergebnis mit 100: \( \frac{6.861}{81.740} \times 100 = 8,39 \% \) 6.861 sind also etwa **8,39 %** von 81.740.
Um den Prozentsatz zu berechnen, verwendest du folgende Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teilwert}}{\text{Gesamtwert}} \right) \times 100 \] In deinem Fall: \[ \text{Prozentsatz}... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
5/6 von 33 berechnest du so: \( \frac{5}{6} \times 33 = \frac{5 \times 33}{6} = \frac{165}{6} = 27,5 \) Das Ergebnis ist **27,5**.
25% von 100 Pixeln sind 25 Pixel.
Es sieht so aus, als wolltest du nach Prozentrechnung fragen. Prozentrechnung ist ein mathematisches Verfahren, um Anteile von einem Ganzen zu berechnen. Hier die wichtigsten Grundlagen: 1. **Prozent... [mehr]
3 % entsprechen 30 ‰ (Promille). Umrechnung: 1 % = 10 ‰ Also: 3 % × 10 = 30 ‰
Wenn 38,5 Hundert Prozent (also 38,5 %) einem bestimmten Wert entsprechen, möchtest du wissen, wie viel 25 % davon sind. Dazu gehst du so vor: 1. Setze den Wert, der 38,5 % entspricht, als 100 ... [mehr]