Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Um die binomische Formel \((4k + 3n)^4\) zu lösen, kannst du die allgemeine Form der binomischen Erweiterung verwenden, die lautet: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In diesem Fall ist \(a = 4k\), \(b = 3n\) und \(n = 4\). Die binomische Koeffizienten \(\binom{n}{k}\) sind die Werte, die die Anzahl der Möglichkeiten darstellen, \(k\) Elemente aus \(n\) auszuwählen. Die vollständige Entwicklung von \((4k + 3n)^4\) ergibt: \[ (4k + 3n)^4 = \sum_{k=0}^{4} \binom{4}{k} (4k)^{4-k} (3n)^k \] Das ergibt: \[ = \binom{4}{0} (4k)^4 (3n)^0 + \binom{4}{1} (4k)^3 (3n)^1 + \binom{4}{2} (4k)^2 (3n)^2 + \binom{4}{3} (4k)^1 (3n)^3 + \binom{4}{4} (4k)^0 (3n)^4 \] Nun berechnen wir die einzelnen Terme: 1. \( \binom{4}{0} (4k)^4 = 1 \cdot 256k^4 = 256k^4 \) 2. \( \binom{4}{1} (4k)^3 (3n) = 4 \cdot 64k^3 \cdot 3n = 768k^3n \) 3. \( \binom{4}{2} (4k)^2 (3n)^2 = 6 \cdot 16k^2 \cdot 9n^2 = 864k^2n^2 \) 4. \( \binom{4}{3} (4k)(3n)^3 = 4 \cdot 4k \cdot 27n^3 = 432kn^3 \) 5. \( \binom{4}{4} (3n)^4 = 1 \cdot 81n^4 = 81n^4 \) Jetzt fügen wir alle Terme zusammen: \[ (4k + 3n)^4 = 256k^4 + 768k^3n + 864k^2n^2 + 432kn^3 + 81n^4 \] Das ist die vollständige Entwicklung der binomischen Formel \((4k + 3n)^4\).
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.
Es gibt keine offiziell anerkannte „längste mathematische Formel der Welt“, da mathematische Formeln je nach Kontext und Notation beliebig lang werden können. Allerdings gibt es... [mehr]
Die Schreibweise **bin(n, k)** steht meist für den **Binomialkoeffizienten** und wird auch als „n über k“ gelesen. Er gibt an, auf wie viele Arten man aus einer Menge von **n** v... [mehr]
Die binomischen Formeln sind drei spezielle Rechenregeln zur Ausmultiplizierung von Klammern mit zwei Gliedern (Binomen). Sie lauten: 1. Erste binomische Formel: \[(a + b)^2 = a^2 + 2ab + b^2\] 2.... [mehr]
Der Dreisatz ist eine Rechenmethode, mit der du proportionale Zusammenhänge berechnen kannst. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu bestimmen. **F... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]