Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um die binomische Formel \((4k + 3n)^4\) zu lösen, kannst du die allgemeine Form der binomischen Erweiterung verwenden, die lautet: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In diesem Fall ist \(a = 4k\), \(b = 3n\) und \(n = 4\). Die binomische Koeffizienten \(\binom{n}{k}\) sind die Werte, die die Anzahl der Möglichkeiten darstellen, \(k\) Elemente aus \(n\) auszuwählen. Die vollständige Entwicklung von \((4k + 3n)^4\) ergibt: \[ (4k + 3n)^4 = \sum_{k=0}^{4} \binom{4}{k} (4k)^{4-k} (3n)^k \] Das ergibt: \[ = \binom{4}{0} (4k)^4 (3n)^0 + \binom{4}{1} (4k)^3 (3n)^1 + \binom{4}{2} (4k)^2 (3n)^2 + \binom{4}{3} (4k)^1 (3n)^3 + \binom{4}{4} (4k)^0 (3n)^4 \] Nun berechnen wir die einzelnen Terme: 1. \( \binom{4}{0} (4k)^4 = 1 \cdot 256k^4 = 256k^4 \) 2. \( \binom{4}{1} (4k)^3 (3n) = 4 \cdot 64k^3 \cdot 3n = 768k^3n \) 3. \( \binom{4}{2} (4k)^2 (3n)^2 = 6 \cdot 16k^2 \cdot 9n^2 = 864k^2n^2 \) 4. \( \binom{4}{3} (4k)(3n)^3 = 4 \cdot 4k \cdot 27n^3 = 432kn^3 \) 5. \( \binom{4}{4} (3n)^4 = 1 \cdot 81n^4 = 81n^4 \) Jetzt fügen wir alle Terme zusammen: \[ (4k + 3n)^4 = 256k^4 + 768k^3n + 864k^2n^2 + 432kn^3 + 81n^4 \] Das ist die vollständige Entwicklung der binomischen Formel \((4k + 3n)^4\).
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um den Prozentsatz zu berechnen, verwendest du folgende Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teilwert}}{\text{Gesamtwert}} \right) \times 100 \] In deinem Fall: \[ \text{Prozentsatz}... [mehr]
Die Formel für die Standardabweichung (σ) einer Grundgesamtheit lautet: \[ \sigma \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \] Dabei gilt: - \( N \): Anzahl der Werte - \( x_i \):... [mehr]
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**... [mehr]
Die Integralrechnung spielte eine entscheidende Rolle bei der Herleitung der Formel für den Flächeninhalt eines Kreises. Historisch wurde der Flächeninhalt eines Kreises zwar schon in d... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
In der Mathematik spricht man in der Regel nicht von der „Definition einer Formel“, sondern unterscheidet zwischen den Begriffen „Formel“ und „Definition“: - **For... [mehr]
Um Prozente zu berechnen, kannst du folgende Grundformeln nutzen: 1. **Prozentwert berechnen:** Prozentwert = Grundwert × Prozentsatz / 100 Beispiel: 20 % von 150 = 150 × 20 / 1... [mehr]
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]
Die Rechenaufgabe **540 : 9 : 12** kannst du kürzer als **540 : (9 × 12)** oder **540 : 108** darstellen. Das bedeutet: 540 geteilt durch 9 und das Ergebnis nochmal geteilt durch 12 ist... [mehr]