Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Um die binomische Formel \((4k + 3n)^4\) zu lösen, kannst du die allgemeine Form der binomischen Erweiterung verwenden, die lautet: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In diesem Fall ist \(a = 4k\), \(b = 3n\) und \(n = 4\). Die binomische Koeffizienten \(\binom{n}{k}\) sind die Werte, die die Anzahl der Möglichkeiten darstellen, \(k\) Elemente aus \(n\) auszuwählen. Die vollständige Entwicklung von \((4k + 3n)^4\) ergibt: \[ (4k + 3n)^4 = \sum_{k=0}^{4} \binom{4}{k} (4k)^{4-k} (3n)^k \] Das ergibt: \[ = \binom{4}{0} (4k)^4 (3n)^0 + \binom{4}{1} (4k)^3 (3n)^1 + \binom{4}{2} (4k)^2 (3n)^2 + \binom{4}{3} (4k)^1 (3n)^3 + \binom{4}{4} (4k)^0 (3n)^4 \] Nun berechnen wir die einzelnen Terme: 1. \( \binom{4}{0} (4k)^4 = 1 \cdot 256k^4 = 256k^4 \) 2. \( \binom{4}{1} (4k)^3 (3n) = 4 \cdot 64k^3 \cdot 3n = 768k^3n \) 3. \( \binom{4}{2} (4k)^2 (3n)^2 = 6 \cdot 16k^2 \cdot 9n^2 = 864k^2n^2 \) 4. \( \binom{4}{3} (4k)(3n)^3 = 4 \cdot 4k \cdot 27n^3 = 432kn^3 \) 5. \( \binom{4}{4} (3n)^4 = 1 \cdot 81n^4 = 81n^4 \) Jetzt fügen wir alle Terme zusammen: \[ (4k + 3n)^4 = 256k^4 + 768k^3n + 864k^2n^2 + 432kn^3 + 81n^4 \] Das ist die vollständige Entwicklung der binomischen Formel \((4k + 3n)^4\).
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((5a - 1)^2\) setzen wir \(a = 5a\) und \(b = 1\) ein: \[ (5a - 1)^2 = (5a)^2 - 2 \cdot (5a) \cdot 1 + 1^... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((y - x)^2\) setzen wir \(a = y\) und \(b = x\) ein: \[ (y - x)^2 = y^2 - 2yx + x^2 \] Das Ergebnis ist... [mehr]
Die zweite Binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 3)^2\) setzen wir \(a = x\) und \(b = 3\) ein: \[ (x - 3)^2 = x^2 - 2 \cdot x \cdot 3 + 3^2 \] Das... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((12s + t)^2\) setzen wir \(a = 12s\) und \(b = t\) ein: \[ (12s + t)^2 = (12s)^2 + 2(12s)(t) + t^2 \] Nu... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((-2 + x)^2\) setzen wir \(a = x\) und \(b = -2\) ein: \[ (-2 + x)^2 = x^2 + 2 \cdot x \cdot (-2) + (-2)^2... [mehr]
Die erste binomische Formel lautet: \((a + b)^2 = a^2 + 2ab + b^2\). Für den Ausdruck \((2 + t)^2\) setzen wir \(a = 2\) und \(b = t\) ein: \[ (2 + t)^2 = 2^2 + 2 \cdot 2 \cdot t + t^2 \] Das... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]