Die Standardabweichung ist ein statistisches Maß, das angibt, wie stark die einzelnen Werte einer Datenreihe im Durchschnitt von ihrem Mittelwert (Durchschnitt) abweichen. Sie zeigt also, wie &q... [mehr]
Die Formel für die Standardabweichung (σ) einer Grundgesamtheit lautet: \[ \sigma \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \] Dabei gilt: - \( N \): Anzahl der Werte - \( x_i \): Einzelner Wert - \( \mu \): Mittelwert der Werte Für eine Stichprobe (statt der Grundgesamtheit) wird meist folgende Formel verwendet: \[ s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \] Hierbei ist \( n \) die Stichprobengröße und \( \bar{x} \) der Stichprobenmittelwert.
Die Standardabweichung ist ein statistisches Maß, das angibt, wie stark die einzelnen Werte einer Datenreihe im Durchschnitt von ihrem Mittelwert (Durchschnitt) abweichen. Sie zeigt also, wie &q... [mehr]
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **1. Rechteck:** Fläche = Lä... [mehr]
Die Flächenberechnung hängt von der Form ab, die du berechnen möchtest. Hier sind die Formeln für einige häufige geometrische Figuren: **Rechteck:** Fläche = Läng... [mehr]
Regression ist ein Begriff aus der Statistik und bezeichnet ein Verfahren, mit dem der Zusammenhang zwischen einer abhängigen Variable (Zielgröße) und einer oder mehreren unabhäng... [mehr]
Um den Prozentsatz zu berechnen, verwendest du folgende Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teilwert}}{\text{Gesamtwert}} \right) \times 100 \] In deinem Fall: \[ \text{Prozentsatz}... [mehr]
Nein, der gewichtete Mittelwert von Mittelwerten ist **nur dann** gleich dem Mittelwert über alle Einzelwerte, **wenn die Mittelwerte mit der jeweiligen Anzahl ihrer Einzelwerte gewichtet werden*... [mehr]
Nein, ein Mittelwert aus Mittelwerten ist im Allgemeinen **nicht** gleich dem Mittelwert, den du erhältst, wenn du alle Einzelwerte zusammenfasst und daraus den Mittelwert berechnest – **es... [mehr]
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**... [mehr]
Die Integralrechnung spielte eine entscheidende Rolle bei der Herleitung der Formel für den Flächeninhalt eines Kreises. Historisch wurde der Flächeninhalt eines Kreises zwar schon in d... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]