Wie berechnet man die Höhe eines gleichseitigen Dreiecks mit dem Satz des Pythagoras?

Antwort

Um die Höhe eines gleichseitigen Dreiecks mit dem Satz des Pythagoras zu berechnen, kannst du die folgenden Schritte befolgen: 1. **Teile das gleichseitige Dreieck in zwei rechtwinklige Dreiecke:** - Ein gleichseitiges Dreieck hat alle Seiten gleich lang. Wenn du eine Höhe einzeichnest, teilst du das Dreieck in zwei gleich große rechtwinklige Dreiecke. 2. **Benenne die Seiten:** - Sei \( a \) die Länge einer Seite des gleichseitigen Dreiecks. - Die Höhe \( h \) teilt die Basis in zwei Hälften, also hat jede Hälfte die Länge \( \frac{a}{2} \). 3. **Verwende den Satz des Pythagoras:** - In einem der rechtwinkligen Dreiecke ist die Hypotenuse die Seite des gleichseitigen Dreiecks \( a \), und die beiden Katheten sind \( \frac{a}{2} \) und \( h \). - Der Satz des Pythagoras lautet: \( a^2 = \left(\frac{a}{2}\right)^2 + h^2 \). 4. **Löse die Gleichung nach \( h \) auf:** - \( a^2 = \left(\frac{a}{2}\right)^2 + h^2 \) - \( a^2 = \frac{a^2}{4} + h^2 \) - \(^2 - \frac{a^2}{4} = h^2 \) - \( \{3a^2}{4} = h^2 \) - \( h = \sqrt{\frac{3a^2}{4}} \) - \( h = \frac{a\sqrt{3}}{2} \) Also ist die Höhe \( h \) eines gleichseitigen Dreiecks mit Seitenlänge \( a \) gleich \( \frac{a\sqrt{3}}{2} \).

KI fragen

Verwandte Fragen

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie berechnet man ein gleichseitiges Dreieck?

Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]

Was ist der Schwerpunkt eines Dreiecks?

Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]

Wie kann ich aus Entfernung und Höhe den Winkel berechnen?

Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]

Ist ein solches Dreieck geometrisch möglich?

Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]

Wie groß ist die Fläche eines rechtwinkligen Dreiecks mit Hypotenuse 10 cm und Höhe auf der Hypotenuse 6 cm?

Die Fläche eines Dreiecks berechnet sich allgemein mit: \[ A = \frac{1}{2} \cdot \text{Grundseite} \cdot \text{zugehörige Höhe} \] In deinem Fall ist die Grundseite die Hypotenuse \(... [mehr]

Was sind Sinussatz und Kosinussatz und wann werden sie angewendet?

Der **Sinussatz** und der **Kosinussatz** sind zwei wichtige mathematische Sätze aus der Trigonometrie, die in beliebigen Dreiecken (also nicht nur in rechtwinkligen Dreiecken) verwendet werden.... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]