Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
Um die Höhe eines gleichseitigen Dreiecks mit dem Satz des Pythagoras zu berechnen, kannst du die folgenden Schritte befolgen: 1. **Teile das gleichseitige Dreieck in zwei rechtwinklige Dreiecke:** - Ein gleichseitiges Dreieck hat alle Seiten gleich lang. Wenn du eine Höhe einzeichnest, teilst du das Dreieck in zwei gleich große rechtwinklige Dreiecke. 2. **Benenne die Seiten:** - Sei \( a \) die Länge einer Seite des gleichseitigen Dreiecks. - Die Höhe \( h \) teilt die Basis in zwei Hälften, also hat jede Hälfte die Länge \( \frac{a}{2} \). 3. **Verwende den Satz des Pythagoras:** - In einem der rechtwinkligen Dreiecke ist die Hypotenuse die Seite des gleichseitigen Dreiecks \( a \), und die beiden Katheten sind \( \frac{a}{2} \) und \( h \). - Der Satz des Pythagoras lautet: \( a^2 = \left(\frac{a}{2}\right)^2 + h^2 \). 4. **Löse die Gleichung nach \( h \) auf:** - \( a^2 = \left(\frac{a}{2}\right)^2 + h^2 \) - \( a^2 = \frac{a^2}{4} + h^2 \) - \(^2 - \frac{a^2}{4} = h^2 \) - \( \{3a^2}{4} = h^2 \) - \( h = \sqrt{\frac{3a^2}{4}} \) - \( h = \frac{a\sqrt{3}}{2} \) Also ist die Höhe \( h \) eines gleichseitigen Dreiecks mit Seitenlänge \( a \) gleich \( \frac{a\sqrt{3}}{2} \).
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]