Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Um das Gleichungssystem mit dem Additionsverfahren zu lösen, folge diesen Schritten: 1. Schreibe die Gleichungen in eine standardisierte Form: \[ \frac{8}{11}x + \frac{3}{4}y = 14 \] \[ \frac{6}{11}x - \frac{1}{2}y = 2 \] 2. Multipliziere die Gleichungen so, dass die Koeffizienten von \(y\) gleich werden. Dazu finden wir das kleinste gemeinsame Vielfache der Nenner der \(y\)-Koeffizienten (4 und 2), was 4 ist. Multipliziere die zweite Gleichung mit 2: \[ 2 \left( \frac{6}{11}x - \frac{1}{2}y \right) = 2 \cdot 2 \] \[ \frac{12}{11}x - y = 4 \] 3. Nun haben wir das System: \[ \frac{8}{11}x + \frac{3}{4}y = 14 \] \[ \frac{12}{11}x - y = 4 \] 4. Multipliziere die erste Gleichung mit 4, um die \(y\)-Koeffizienten gleich zu machen: \[ 4 \left( \frac{8}{11}x + \frac{3}{4}y \right) = 4 \cdot 14 \] \[ \frac{32}{11}x + 3y = 56 \] 5. Nun haben wir das System: \[ \frac{32}{11}x + 3y = 56 \] \[ \frac{12}{11}x - y = 4 \] 6. Multipliziere die zweite Gleichung mit 3, um die \(y\)-Koeffizienten gleich zu machen: \[ 3 \left( \frac{12}{11}x - y \right) = 3 \cdot 4 \] \[ \frac{36}{11}x - 3y = 12 \] 7. Nun haben wir das System: \[ \frac{32}{11}x + 3y = 56 \] \[ \frac{36}{11}x - 3y = 12 \] 8. Addiere die beiden Gleichungen, um \(y\) zu eliminieren: \[ \left( \frac{32}{11}x + 3y \right) + \left( \frac{36}{11}x - 3y \right) = 56 + 12 \] \[ \frac{68}{11}x = 68 \] 9. Löse nach \(x\) auf: \[ x = 1 \] 10. Setze \(x = 1\) in eine der ursprünglichen Gleichungen ein, um \(y\) zu finden. Verwende die zweite Gleichung: \[ \frac{6}{11}(1) - \frac{1}{2}y = 2 \] \[ \frac{6}{11} - \frac{1}{2}y = 2 \] \[ -\frac{1}{2}y = 2 - \frac{6}{11} \] \[ -\frac{1}{2}y = \frac{22}{11} - \frac{6}{11} \] \[ -\frac{1}{2}y = \frac{16}{11} \] \[ y = -\frac{16}{11} \cdot 2 \] \[ y = -\frac{32}{11} \] Das Lösungspaar ist: \[ x = 1, \quad y = -\frac{32}{11} \]
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Um die Gleichung \(14x + (15x - 23) = (19 + 25x) + (34x + 18)\) zu lösen, folge diesen Schritten: 1. Vereinfache beide Seiten der Gleichung. Linke Seite: \[ 14x + 15x - 23 = 29x - 23 \] Rechte... [mehr]
Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]
Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]
Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]