Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]
Um den Graphen der Funktion \( f(x) = 2x^2 + 4x - 1 \) aus der Normalparabel \( g(x) = x^2 \) zu erhalten, sind folgende geometrische Operationen notwendig: 1. **Streckung**: Die Funktion wird in der y-Richtung um den Faktor 2 gestreckt. Dies geschieht durch die Multiplikation des gesamten Ausdrucks mit 2. Der Graph der Normalparabel wird also zu \( h(x) = 2x^2 \). 2. **Verschiebung**: Der Graph wird dann um 2 Einheiten nach links verschoben. Dies geschieht durch die Substitution \( x \) durch \( x + 2 \). Der Ausdruck wird zu \( k(x) = 2(x + 2)^2 \). 3. **Verschiebung**: Schließlich wird der Graph um 1 Einheit nach unten verschoben. Dies geschieht durch die Subtraktion von 1. Der endgültige Ausdruck wird zu \( f(x) = 2(x + 2)^2 - 1 \). Zusammengefasst sind die Schritte: - Vertikale Streckung um den Faktor 2. - Horizontale Verschiebung um 2 Einheiten nach links. - Vertikale Verschiebung um 1 Einheit nach unten.
Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]
Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]
Die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses (also der Zahl π) ist tatsächlich ein durchgehend rein geometrisch konstruierter Grenzprozess. Archimedes hat da... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Der Begriff „intrinsisch plausibel“ ist kein feststehender oder historisch klar definierter Begriff in der Mathematik oder Geometrie. Er taucht in der mathematischen Literatur nicht als st... [mehr]
Cohaerentische Geometrie legt Wert darauf, dass geometrische Konstruktionen und Begriffe aus sich selbst heraus, also **intrinsisch**, plausibel und nachvollziehbar sind. Das bedeutet, dass die Defini... [mehr]
Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbs... [mehr]
Gegeben ist, dass die Parabel die x-Achse bei \( x = -2 \) und \( x = 4 \) schneidet. Das bedeutet, die Nullstellen der Parabel sind \( x_1 = -2 \) und \( x_2 = 4 \). Die allgemeine Form einer Parabe... [mehr]
In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]
Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Ei... [mehr]