Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Um den Graphen der Funktion \( f(x) = 2x^2 + 4x - 1 \) aus der Normalparabel \( g(x) = x^2 \) zu erhalten, sind folgende geometrische Operationen notwendig: 1. **Streckung**: Die Funktion wird in der y-Richtung um den Faktor 2 gestreckt. Dies geschieht durch die Multiplikation des gesamten Ausdrucks mit 2. Der Graph der Normalparabel wird also zu \( h(x) = 2x^2 \). 2. **Verschiebung**: Der Graph wird dann um 2 Einheiten nach links verschoben. Dies geschieht durch die Substitution \( x \) durch \( x + 2 \). Der Ausdruck wird zu \( k(x) = 2(x + 2)^2 \). 3. **Verschiebung**: Schließlich wird der Graph um 1 Einheit nach unten verschoben. Dies geschieht durch die Subtraktion von 1. Der endgültige Ausdruck wird zu \( f(x) = 2(x + 2)^2 - 1 \). Zusammengefasst sind die Schritte: - Vertikale Streckung um den Faktor 2. - Horizontale Verschiebung um 2 Einheiten nach links. - Vertikale Verschiebung um 1 Einheit nach unten.
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
Ein Verbindungsvektor ist ein Vektor, der zwei Punkte im Raum miteinander verbindet. Die wichtigsten Eigenschaften von Verbindungsvektoren sind: 1. **Definition**: Der Verbindungsvektor \(\vec{A... [mehr]
Ein Parallelogramm erkennst du an folgenden Eigenschaften: 1. **Gegenüberliegende Seiten sind parallel**: Die jeweils gegenüberliegenden Seiten verlaufen exakt parallel zueinander. 2. **Geg... [mehr]
Nein, vier Linien können sich im Allgemeinen nicht nur in genau zwei Punkten schneiden. **Begründung:** Wenn sich vier Linien schneiden, gibt es verschiedene Möglichkeiten, wie sie s... [mehr]
Vier Geraden können sich in genau zwei Punkten schneiden, aber nur unter bestimmten Bedingungen: - Zwei der Geraden müssen sich in einem Punkt schneiden. - Die anderen beiden Geraden mü... [mehr]
Vier Geraden können sich auf verschiedene Arten schneiden, je nachdem, wie sie zueinander liegen. Die „Punkte“, die du meinst, sind vermutlich die Schnittpunkte der Geraden. **Allgem... [mehr]
Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]
Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]