Um den Ausdruck \((a+3b)²-(a-4b)²\) zu lösen, wenden wir die Formel für die Differenz der Quadrate an, die lautet: \(x² - y² = (x - y)(x + y)\). Setzen wir \(x = (a + 3b... [mehr]
Eine Raute, auch Rhombus genannt, ist ein spezielles Parallelogramm, bei dem alle vier Seiten gleich lang sind. Hier sind die wichtigsten Formeln, die du für eine Raute kennen solltest: 1. **Seitenlänge (a):** - Alle vier Seiten sind gleich lang: \( a \) 2. **Umfang (U):** - \( U = 4a \) 3. **Fläche (A):** - \( A = a^2 \sin(\alpha) \), wobei \( \alpha \) der Winkel zwischen zwei benachbarten Seiten ist. - Alternativ kann die Fläche auch mit den Diagonalen berechnet werden: \( A = \frac{e \cdot f}{2} \), wobei \( e \) und \( f \) die Längen der Diagonalen sind. 4. **Diagonalen (e und f):** - Die Diagonalen stehen senkrecht aufeinander und halbieren sich gegenseitig. - Wenn die Seitenlänge \( a \) und der Winkel \( \alpha \) bekannt sind, können die Diagonalen berechnet werden: - \( e = a \sqrt{2 + 2 \cos(\alpha)} \) - \( f = a \sqrt{2 - 2 \cos(\alpha)} \) 5. **Winkel:** - Die gegenüberliegenden Winkel sind gleich. - Die Summe der benachbarten Winkel beträgt 180 Grad. Diese Formeln helfen dir, verschiedene Eigenschaften und Maße einer Raute zu berechnen.
Um den Ausdruck \((a+3b)²-(a-4b)²\) zu lösen, wenden wir die Formel für die Differenz der Quadrate an, die lautet: \(x² - y² = (x - y)(x + y)\). Setzen wir \(x = (a + 3b... [mehr]
Um die Klammern aufzulösen und die Terme zusammenzufassen, wendest du die binomische Formel für das Quadrat eines Binoms an. Die Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). In deinem F... [mehr]
Ja, jeder Würfel ist ein spezielles Prisma. Ein Prisma ist ein geometrischer Körper, der zwei parallele Flächen (die Basen) hat, die durch rechteckige Seitenflächen verbunden sind.... [mehr]
In der Geometrie werden V (Volumen), r (Radius) und h (Höhe) in der Regel als Variablen bezeichnet, da sie Werte annehmen können, die von der spezifischen geometrischen Figur oder dem Kontex... [mehr]