Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Eine lineare Funktion ist eine mathematische Funktion, die eine gerade Linie im Koordinatensystem darstellt. Sie hat die allgemeine Form: \[ f(x) = mx + b \] Hier sind die Bestandteile dieser Gleichung: 1. **\( f(x) \)**: Dies ist der Funktionswert oder der y-Wert. Es ist das Ergebnis, das du erhältst, wenn du einen bestimmten x-Wert in die Funktion einsetzt. 2. **\( x \)**: Dies ist die unabhängige Variable oder der x-Wert. Du kannst verschiedene Werte für x einsetzen, um die entsprechenden y-Werte zu berechnen. 3. **\( m \)**: Dies ist die Steigung der Linie. Sie gibt an, wie steil die Linie ist. Eine positive Steigung bedeutet, dass die Linie nach oben geht, wenn man von links nach rechts schaut. Eine negative Steigung bedeutet, dass die Linie nach unten geht. 4. **\( b \)**: Dies ist der y-Achsenabschnitt. Es ist der Punkt, an dem die Linie die y-Achse schneidet. Wenn \( x = 0 \) ist, dann ist \( f(x) = b \). ### Beispiel Nehmen wir die lineare Funktion: \[ f(x) = 2x + 3 \] Hier ist \( m = 2 \) und \( b = 3 \). - **Steigung \( m = 2 \)**: Für jeden Schritt, den du nach rechts gehst (x um 1 erhöhst), geht die Linie zwei Schritte nach oben. - **y-Achsenabschnitt \( b = 3 \)**: Die Linie schneidet die y-Achse bei \( y = 3 \). ### Berechnung von Punkten Um Punkte auf der Linie zu finden, kannst du verschiedene x-Werte einsetzen: - Wenn \( x = 0 \): \[ f(0) = 2(0) + 3 = 3 \] Punkt: (0, 3) - Wenn \( x = 1 \): \[ f(1) = 2(1) + 3 = 5 \] Punkt: (1, 5) - Wenn \( x = -1 \): \[ f(-1) = 2(-1) + 3 = 1 \] Punkt: (-1, 1) ### Zeichnen der Funktion 1. Zeichne das Koordinatensystem. 2. Markiere den y-Achsenabschnitt (0, 3). 3. Verwende die Steigung, um weitere Punkte zu finden. Von (0, 3) gehe einen Schritt nach rechts (x um 1 erhöhen) und zwei Schritte nach oben (y um 2 erhöhen), um den Punkt (1, 5) zu finden. 4. Verbinde die Punkte mit einer geraden Linie. Das ist die grundlegende Idee einer linearen Funktion. Sie ist einfach zu verstehen und zu zeichnen, weil sie immer eine gerade Linie darstellt.
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
7x² ist ein algebraischer Ausdruck, der bedeutet, dass die Variable x mit sich selbst multipliziert und dann mit 7 multipliziert wird. Es handelt sich um eine quadratische Funktion in Bezug auf x... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]