Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Eine lineare Funktion ist eine mathematische Funktion, die eine gerade Linie im Koordinatensystem darstellt. Sie hat die allgemeine Form: \[ f(x) = mx + b \] Hier sind die Bestandteile dieser Gleichung: 1. **\( f(x) \)**: Dies ist der Funktionswert oder der y-Wert. Es ist das Ergebnis, das du erhältst, wenn du einen bestimmten x-Wert in die Funktion einsetzt. 2. **\( x \)**: Dies ist die unabhängige Variable oder der x-Wert. Du kannst verschiedene Werte für x einsetzen, um die entsprechenden y-Werte zu berechnen. 3. **\( m \)**: Dies ist die Steigung der Linie. Sie gibt an, wie steil die Linie ist. Eine positive Steigung bedeutet, dass die Linie nach oben geht, wenn man von links nach rechts schaut. Eine negative Steigung bedeutet, dass die Linie nach unten geht. 4. **\( b \)**: Dies ist der y-Achsenabschnitt. Es ist der Punkt, an dem die Linie die y-Achse schneidet. Wenn \( x = 0 \) ist, dann ist \( f(x) = b \). ### Beispiel Nehmen wir die lineare Funktion: \[ f(x) = 2x + 3 \] Hier ist \( m = 2 \) und \( b = 3 \). - **Steigung \( m = 2 \)**: Für jeden Schritt, den du nach rechts gehst (x um 1 erhöhst), geht die Linie zwei Schritte nach oben. - **y-Achsenabschnitt \( b = 3 \)**: Die Linie schneidet die y-Achse bei \( y = 3 \). ### Berechnung von Punkten Um Punkte auf der Linie zu finden, kannst du verschiedene x-Werte einsetzen: - Wenn \( x = 0 \): \[ f(0) = 2(0) + 3 = 3 \] Punkt: (0, 3) - Wenn \( x = 1 \): \[ f(1) = 2(1) + 3 = 5 \] Punkt: (1, 5) - Wenn \( x = -1 \): \[ f(-1) = 2(-1) + 3 = 1 \] Punkt: (-1, 1) ### Zeichnen der Funktion 1. Zeichne das Koordinatensystem. 2. Markiere den y-Achsenabschnitt (0, 3). 3. Verwende die Steigung, um weitere Punkte zu finden. Von (0, 3) gehe einen Schritt nach rechts (x um 1 erhöhen) und zwei Schritte nach oben (y um 2 erhöhen), um den Punkt (1, 5) zu finden. 4. Verbinde die Punkte mit einer geraden Linie. Das ist die grundlegende Idee einer linearen Funktion. Sie ist einfach zu verstehen und zu zeichnen, weil sie immer eine gerade Linie darstellt.
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
45 auf die nächste 10 gerundet ergibt 50.
Die Gleichung „0 durch 0 = 0 durch 1“ ist mathematisch nicht korrekt. - **0 durch 0** (also \( \frac{0}{0})) ist **nicht definiert**. Das liegt daran, dass jede Zahl mal 0 wieder 0 ergibt... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Um den Prozentsatz zu berechnen, teilst du 6.861 durch 81.740 und multiplizierst das Ergebnis mit 100: \( \frac{6.861}{81.740} \times 100 = 8,39 \% \) 6.861 sind also etwa **8,39 %** von 81.740.
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Bei einer Sinusfunktion, meist in der Form \( f(x) = a \cdot \sin(bx + c) + d \), können folgende Eigenschaften angegeben werden: 1. **Amplitude** (\(a\)): Gibt die maximale Auslenkung vom Mitte... [mehr]
Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwindigkeit, Popula... [mehr]