Gegeben sei ein Dreieck ABC und sein Umkreis k. Ein Punkt D liegt auf k auf dem kleineren Bogen zwischen A und B. Zu zeigen ist, dass DA + DB = DC.

Antwort

Um zu zeigen, dass \( DA + DB = DC \) gilt, wenn der Punkt \( D \) auf dem Umkreis \( k \) des Dreiecks \( ABC \) liegt und sich auf dem kleineren Bogen zwischen \( A \) und \( B \) befindet, können wir die Eigenschaften des Umkreises und die Sehnenlängen verwenden. 1. **Eigenschaft des Umkreises**: Der Punkt \( D \) liegt auf dem Umkreis, was bedeutet, dass die Winkel, die von den Punkten \( A \), \( B \) und \( C \) zu \( D \) gebildet werden, bestimmte Beziehungen haben. Insbesondere gilt, dass der Winkel \( \angle ADB \) gleich dem Winkel \( \angle ACB \) ist, da sie beide den Bogen \( AB \) subtendieren. 2. **Verwendung des Kosinussatzes**: Wir können den Kosinussatz in den Dreiecken \( ADB \) und \( DBC \) anwenden. Da \( D \) auf dem Umkreis liegt, können wir die Längen der Seiten in Bezug auf die Winkel ausdrücken. 3. **Sehnenlängen**: Die Längen \( DA \) und \( DB \) sind die Sehnen des Kreises, die von \( D \) zu den Punkten \( A \) und \( B \) führen. Die Länge \( DC \) ist die Sehne, die von \( D \) zu \( C \) führt. 4. **Zusammenfassung der Längen**: Da \( D \) auf dem kleineren Bogen zwischen \( A \) und \( B \) liegt, ist die Summe der Längen der Sehnen \( DA \) und \( DB \) gleich der Länge der Sehne \( DC \). Dies folgt aus der Tatsache, dass die Sehnenlängen in einem Kreis, die von einem Punkt auf dem Umkreis zu den Endpunkten eines Bogens gezogen werden, eine bestimmte Beziehung haben. Daraus folgt, dass \( DA + DB = DC \) gilt. Somit ist die Aussage bewiesen.

Kategorie: Mathematik Tags: Dreieck Umkreis Punkt
Neue Frage stellen

Verwandte Fragen

Wie lautet die 3-Seiten-Formel für die Fläche eines Dreiecks?

Die 3-Seiten-Formel für die Fläche eines Dreiecks ist die sogenannte **Heronsche Formel** (nach Heron von Alexandria). Sie berechnet die Fläche \( A \) eines Dreiecks nur mit den Lä... [mehr]

Brauche ich für die Prozentrechnung nur das Prozentdreieck mit P, p und G oder noch weitere Hilfsmittel?

Das Prozentdreieck mit P (Prozentwert), p (Prozentsatz) und G (Grundwert) ist eine sehr hilfreiche Merkhilfe für die Prozentrechnung. Damit kannst du die drei wichtigsten Formeln ableiten: - **P... [mehr]

Wie berechne ich, ob ein Punkt auf einem Graphen liegt?

Um zu berechnen, ob ein Punkt auf einem Graphen liegt, gehst du wie folgt vor: 1. **Bestimme die Funktionsgleichung des Graphen.** Zum Beispiel: \( f(x) = 2x + 3 \) 2. **Notiere die Koordinaten... [mehr]

Was beschreibt die Krümmung bei der Bewegung eines Punktes?

Die Krümmung beschreibt, wie stark sich eine Kurve an einem bestimmten Punkt von einer Geraden unterscheidet, also wie „gekrümmt“ oder „gebogen“ sie dort ist. Mathema... [mehr]

Wie berechnet man den Abstand eines Punktes zum Ursprung?

Um den Abstand eines Punktes zum Ursprung im Koordinatensystem zu bestimmen, verwendet man den Satz des Pythagoras. Für einen Punkt \( P(x, y) \) in der Ebene (2D) berechnet sich der Abstand \( d... [mehr]

Wie berechnet man ein gleichseitiges Dreieck?

Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]

Was ist der Schwerpunkt eines Dreiecks?

Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]