Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]
Um zu zeigen, dass \( DA + DB = DC \) gilt, wenn der Punkt \( D \) auf dem Umkreis \( k \) des Dreiecks \( ABC \) liegt und sich auf dem kleineren Bogen zwischen \( A \) und \( B \) befindet, können wir die Eigenschaften des Umkreises und die Sehnenlängen verwenden. 1. **Eigenschaft des Umkreises**: Der Punkt \( D \) liegt auf dem Umkreis, was bedeutet, dass die Winkel, die von den Punkten \( A \), \( B \) und \( C \) zu \( D \) gebildet werden, bestimmte Beziehungen haben. Insbesondere gilt, dass der Winkel \( \angle ADB \) gleich dem Winkel \( \angle ACB \) ist, da sie beide den Bogen \( AB \) subtendieren. 2. **Verwendung des Kosinussatzes**: Wir können den Kosinussatz in den Dreiecken \( ADB \) und \( DBC \) anwenden. Da \( D \) auf dem Umkreis liegt, können wir die Längen der Seiten in Bezug auf die Winkel ausdrücken. 3. **Sehnenlängen**: Die Längen \( DA \) und \( DB \) sind die Sehnen des Kreises, die von \( D \) zu den Punkten \( A \) und \( B \) führen. Die Länge \( DC \) ist die Sehne, die von \( D \) zu \( C \) führt. 4. **Zusammenfassung der Längen**: Da \( D \) auf dem kleineren Bogen zwischen \( A \) und \( B \) liegt, ist die Summe der Längen der Sehnen \( DA \) und \( DB \) gleich der Länge der Sehne \( DC \). Dies folgt aus der Tatsache, dass die Sehnenlängen in einem Kreis, die von einem Punkt auf dem Umkreis zu den Endpunkten eines Bogens gezogen werden, eine bestimmte Beziehung haben. Daraus folgt, dass \( DA + DB = DC \) gilt. Somit ist die Aussage bewiesen.
Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]