Algebraischer Beweis: Quadratzahlen bei Division durch 8 geben Rest 0?

Antwort

Ja, ich kann dir zeigen, wie man algebraisch beweist, welche Quadratzahlen bei Division durch 8 den Rest 0 lassen. Betrachten wir eine ganze Zahl \( n \). Wir wollen herausfinden, wann \( n^2 \) bei Division durch 8 den Rest 0 lässt. Das bedeutet, wir suchen \( n \), sodass \( n^2 \equiv 0 \pmod{8} \). Eine Zahl \( n \) kann in der Form \( n = 8k + r \) geschrieben werden, wobei \( k \) eine ganze Zahl ist und \( r \) der Rest bei Division durch 8 ist. Der Rest \( r \) kann die Werte 0, 1, 2, 3, 4, 5, 6 oder 7 annehmen. Nun betrachten wir die Quadrate dieser möglichen Reste: 1. \( r = 0 \): \[ (8k + 0)^2 = 64k^2 \equiv 0 \pmod{8} \] 2. \( r = 1 \): \[ (8k + 1)^2 = 64k^2 + 16k + 1 \equiv 1 \pmod{8} \] 3. \( r = 2 \): \[ (8k + 2)^2 = 64k^2 + 32k + 4 \equiv 4 \pmod{8} \] 4. \( r = 3 \): \[ (8k + 3)^2 = 64k^2 + 48k + 9 \equiv 1 \pmod{8} \] 5. \( r = 4 \): \[ (8k + 4)^2 = 64k^2 + 64k + 16 \equiv 0 \pmod{8} \] 6. \( r = 5 \): \[ (8k + 5)^2 = 64k^2 + 80k + 25 \equiv 1 \pmod{8} \] 7. \( r = 6 \): \[ (8k + 6)^2 = 64k^2 + 96k + 36 \equiv 4 \pmod{8} \] 8. \( r = 7 \): \[ (8k + 7)^2 = 64k^2 + 112k + 49 \equiv 1 \pmod{8} \] Aus diesen Berechnungen sehen wir, dass \( n^2 \equiv 0 \pmod{8} \) nur dann gilt, wenn \( n \equiv 0 \pmod{8} \) oder \( n \equiv 4 \pmod{8} \). Das bedeutet, die Quadratzahlen von \( n \), die bei Division durch 8 den Rest 0 lassen, sind diejenigen, bei denen \( n \) entweder ein Vielfaches von 8 oder 4 mehr als ein Vielfaches von 8 ist.

KI fragen

Verwandte Fragen

Wie viel ist 8 Milliarden durch 88 Tausend?

8 Milliarden geteilt durch 88 Tausend ergibt: 8.000.000.000 ÷ 88.000 = 90.909,09 Das Ergebnis ist also etwa 90.909,09.

Welche ist die kleinste Primzahl, die als Summe dreier aufeinanderfolgender Quadratzahlen dargestellt werden kann?

Gesucht ist die kleinste Primzahl, die als Summe dreier aufeinanderfolgender Quadratzahlen geschrieben werden kann. Bezeichne die drei aufeinanderfolgenden Zahlen als \( n-1 \), \( n \), \( n+1 \). D... [mehr]

Was ist x² minus y²?

Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]

Wie rechnet man den Term −3x² + 15x aus?

Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]

Was bedeutet 1:0?

Eine Division durch null, also 1 : 0, ist mathematisch nicht definiert. Das bedeutet, es gibt kein Ergebnis für diese Rechnung, da das Teilen durch null in der Mathematik nicht erlaubt ist.

Wie viel ist der 10. Teil von 2100?

Um den 10. Teil von 2100 zu berechnen, teilst du 2100 durch 10: 2100 ÷ 10 = 210 Der 10. Teil von 2100 ist also **210**.

Wie kann man 540 : 9 : 12 als kürzere Rechenaufgabe schreiben?

Die Rechenaufgabe **540 : 9 : 12** kannst du kürzer als **540 : (9 × 12)** oder **540 : 108** darstellen. Das bedeutet: 540 geteilt durch 9 und das Ergebnis nochmal geteilt durch 12 ist... [mehr]

Wie rechne ich 102 geteilt durch 17 schriftlich mit Rechenschritten?

Hier ist die schriftliche Division von 102 durch 17 Schritt für Schritt erklärt: **1. Schritt:** Überlege, wie oft 17 in die 102 passt. **2. Schritt:** 17 passt in 102 insgesamt 6... [mehr]

Wie berechnet man 102 geteilt durch 17?

Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.

Was ist zehn Milliarden geteilt durch 75 Millionen?

Zehn Milliarden geteilt durch 75 Millionen ergibt: 10.000.000.000 ÷ 75.000.000 = 133,33 (gerundet auf zwei Nachkommastellen).